K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Bài 1

A B C M H K 1 a, Xét ΔABM và ΔACB có

\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)

⇒ ΔABM ~ ΔACB (g.g)(đpcm)

b, Vì ΔABM ~ ΔACB

\(\frac{AB}{AC}=\frac{AM}{AB}\)

⇒ AB2 = AM . AC

⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)

Vậy AM = 1cm

c, Vì ΔABM ~ ΔACB

\(\widehat{M_1}=\widehat{ABC}\)

\(\widehat{M_1}=\widehat{ABH}\)

Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)

AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)

ΔAHB và ΔAKM có

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)

⇒ ΔAHB ~ ΔAKM (g.g)

\(\frac{AB}{AM}=\frac{AH}{AK}\)

⇒ AB . AK = AH . AM (đpcm)

d, Vì ΔABH ~ ΔAMK

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)

⇒ SΔABH = 4SΔAMK (đpcm)

29 tháng 3 2018

https://tranvantoancv.violet.vn/present/show/entry_id/11065326

1 tháng 4 2019

a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ

=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC

1 tháng 4 2019

b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)

Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)

Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)