Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo giả thiết ta có \(\left(a_1^2+\cdots+a_{2015}^2\right)-2\cdot2015\cdot\left(a_1+\cdots+a_{2015}\right)\le2015^3-2\cdot2015^3+1=1-2015^3\), do vậy mà \(\left(a_1-2015\right)^2+\cdots+\left(a_{2015}-2015\right)^2\le1\), vì các số bên vế trái đều là các số tự nhiên nên trong các số này có 2014 số bằng 0 số còn lại bằng 0 hoặc bằng 1. Thành thử trong 2015 số tự nhiên \(a_1,\ldots,a_{2015}\) có \(2014\) số bằng \(2015\) số còn lại có thể bằng \(2015\), có thể \(2014\) hoặc \(2016\). Tuy nhiên hai trường hợp sau không thoả mãn. Vậy tất cả các số bằng \(2015\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2a) a + b = 9 ⇔ a = b - 9
a2 + b2 = 41 ⇔ ( b - 9)2 + b2 = 41 ⇔ 2b2 - 18b + 81 - 41 = 0
⇔ 2b2 - 18b + 40 = 0 ⇔ b2 - 9b + 20 = 0
⇔ b2 - 4b - 5b + 20 = 0
⇔ ( b - 4)( b - 5) = 0
⇔ b = 4 ; b = 5
KL.................................
b) a - b = 5 ⇔ a = b + 5
ab = ( b + 5)b = 36 ⇔ b2 + 5b - 36 = 0
⇔ b2 - 4b + 9b - 36 = 0
⇔ ( b - 4)( b + 9) = 0
⇔ b = 4 ; b = -9
c) Tương tự nhé bạn.