Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AC^2=HC\cdot BC\\AB^2=HB\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{HC}{HB}=\left(\dfrac{AC}{AB}\right)^2=2\)
b: HC/HB=2
nên HC=2HB
HC-HB=2
nên 2HB-HB=2
=>HB=2
=>HC=4
=>BC=6
\(AB=\sqrt{2\cdot6}=2\sqrt{3}\)
\(AC=\sqrt{4\cdot6}=2\sqrt{6}\)
b: \(\sqrt{ab}< =\dfrac{a+b}{2}\)
=>a+b>=2 căn ab
=>(căn a-căn b)^2>=0(luôn đúng)
a: Xét ΔAC'C vuông tại C' và ΔAB'B vuông tại B' có
góc C'AC chung
=>ΔAC'C đồng dạng với ΔAB'B
=>AC'/AB'=AC/AB
=>AC'*AB=AB'*AC(1)
b: Xét ΔANB vuông tại N có NC' vuông góc với AB
nên AC'*AB=AN^2(2)
Xét ΔAMC vuông tại M có MB' vuông góc với AC
nên AB'*AC=AM^2(3)
Từ (1), (2), (3) suy ra AN=AM
Ta có : \(\dfrac{MN}{BC} = \dfrac{AK}{AH} \)
Gợi MN = \(x\) , ta có :
\(\dfrac{x}{a} = \dfrac{h-x}{h}\)
Từ đó \(\Rightarrow\) \(hx = ah - ax\)
\(\Leftrightarrow\) \(x = \dfrac{ah}{a+h}\)
Ta có : MP = MN\(\sqrt{2}\)
\(\Rightarrow\) MP = \(\dfrac{\sqrt{2}ah}{a+h}\)
mình hướng dẫn nhé
b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\)
\(\Rightarrow AD\perp BC\) là đường cao đồng thời là đường phân giác
\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)
ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ
\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)
Với dữ kiện đề bài \(a+b+c+2=abc\) ta đặt:
\(a=\frac{y+z}{x};b=\frac{x+z}{y};c=\frac{x+y}{z}\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{3}{4}\)
BĐT<=> \(\sqrt{\frac{a^2-1}{a^2}}+\sqrt{\frac{b^2-1}{b^2}}+\sqrt{\frac{c^2-1}{c^2}}\le\frac{3\sqrt{3}}{2}\)
<=> \(\sqrt{1-\frac{1}{a^2}}+\sqrt{1-\frac{1}{b^2}}+\sqrt{1-\frac{1}{c^2}}\le\frac{3\sqrt{3}}{2}\)
Áp dụng BĐT buniacoxki cho VT ta có :
\(VT\le\sqrt{3.\left(3-\frac{1}{a^2}-\frac{1}{b^2}-\frac{1}{c^2}\right)}\le\sqrt{3\left(3-\frac{3}{4}\right)}=\frac{3\sqrt{3}}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=2
lú rùi vậy cũng sai :(
\(BDT\Leftrightarrow\sqrt{\dfrac{c}{b}.\dfrac{a-c}{a}}+\sqrt{\dfrac{c}{a}.\dfrac{b-c}{b}}\le1\)
Áp dụng BĐT AM-GM ta có:
\(VT\le\dfrac{\dfrac{c}{b}+\dfrac{a-c}{a}}{2}+\dfrac{\dfrac{c}{a}+\dfrac{b-c}{b}}{2}=1\)
1, △ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :
A. a = 15√3153
B. a = 10√3103
C. a = 20√332033
D. a = 20√3203
2, △ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :
A. b' = 8
B. b' = 6
C. b' = 6√363
D. b' = 3√3
bạn tham khảo : https://hoc24.vn/hoi-dap/question/477209.html