Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A B C D O M N
Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)
=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)
=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)
=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)
Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)
=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)
Từ (1), (2),(3):
=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)
=> MO=NO(dpcm)
CHÚC BẠN HỌC TỐT!
Sory mình chưa đọc hết
A) Xét ACE và ABD có:
Góc BAC chung
góc AEC=gocsADB = 90
=> ACE đồng dạng với ABD
B) Xét tam giác EHB và tam giác DHC
EHB=DHC(2 góc đối đỉnh)
BEH=CDH=90
=> EHB đồng dạng với DHC
=> EH/HB = HD/HC (tính chất)
=> EH.CH=HD.HB
C) Vì BD,EC là 2 đường cao của tam giác ABC cắt nhau tại H
=> AH cũng là đường cao
=>AH vuông góc với BC
Xét AFC và FIC
ACB chung
AFC=FIC=90
=>Tam giác AFC đồng dạng với tam giác FIC
=> IF/IC=FA/FC(tính chất)
D) gọi NI cắt MF tại K
Bài này bạn tự vẽ hình nha
Áp dụng tính chất phân giác trong ta có :
AD là phân giác góc A \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)
Tương tự :\(\frac{EC}{EA}=\frac{BC}{AB};\frac{FA}{FB}=\frac{CA}{BC}\)
Do đó : \(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AB.AC.BC}{AB.AC.BC}=1\)
ĐPCM. tik mik nha !!!!
Bài 1 dễ r làm bài 2 :
A B C D F E
Ta có : AD là tia phân giác của góc BAC
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)
Ta có : BE là tia phân giác của góc ABC
\(\Rightarrow\dfrac{EC}{EA}=\dfrac{BC}{BA}\) (2)
Ta có : CF là tia phân giác của góc BCA
\(\Rightarrow\dfrac{FA}{FB}=\dfrac{AC}{BC}\) (3)
Nhận 2 vế của (1)(2)(3) ta được :
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB.AC.BC}{AB.BC.CA}=1\)