Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
a)
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{28\cdot31}\\
=\dfrac{1}{3}\cdot\dfrac{3}{1\cdot4}+\dfrac{1}{3}\cdot\dfrac{3}{4\cdot7}+\dfrac{1}{3}\cdot\dfrac{3}{7\cdot10}+...+\dfrac{1}{3}\cdot\dfrac{3}{28\cdot31}\\
=\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\right)\\
=\dfrac{1}{3}\cdot\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\
=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{31}\right)\\
=\dfrac{1}{3}\cdot\dfrac{30}{31}\\
=\dfrac{10}{31}\)
b)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\
=\dfrac{5}{2}\cdot\dfrac{2}{1\cdot3}+\dfrac{5}{2}\cdot\dfrac{2}{3\cdot5}+\dfrac{5}{2}\cdot\dfrac{2}{5\cdot7}+...+\dfrac{5}{2}\cdot\dfrac{2}{99\cdot101}\\
=\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\
=\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\
=\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\
=\dfrac{5}{2}\cdot\dfrac{100}{101}\\
=\dfrac{250}{101}\)
B2
\(A=\dfrac{10^5+4}{10^5-1}=\dfrac{10^5-1+5}{10^5-1}=\dfrac{10^5-1}{10^5-1}+\dfrac{5}{10^5-1}=1+\dfrac{5}{10^5-1}\\
B=\dfrac{10^5+3}{10^5-2}=\dfrac{10^5-2+5}{10^5-2}=\dfrac{10^5-2}{10^5-2}+\dfrac{5}{10^5-2}=1+\dfrac{5}{10^5-2}
\)
Vì \(10^5-1>10^5-2\Rightarrow\dfrac{5}{10^5-1}< \dfrac{5}{10^5-2}\Rightarrow1+\dfrac{5}{10^5-1}< 1+\dfrac{5}{10^5-2}\Leftrightarrow A< B\)
B3
\(A=\dfrac{n-2}{n+3}\)
Để \(A\) có giá trị nguyên thì \(n-2⋮n+3\)
\(n-2=n+3+\left(-5\right)⋮n+3\Rightarrow-5⋮n+3\Rightarrow n+3\inƯ\left(-5\right)\)
\(Ư\left(-5\right)=\left\{-5;-1;1;5\right\}\)
n+3 | -5 | -1 | 1 | 5 |
n | -8 | -4 | -2 | 2 |
Vậy \(n\in\left\{-8;-4;-2;2\right\}\)
Để \(A\) có giá trị nguyên thì \(3n+1⋮n-1\)
\(3n+1=3n-3+4⋮n-1\Leftrightarrow3\cdot\left(n-1\right)+4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
n-1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -3 | -1 | 0 | 2 | 3 | 5 |
Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)
a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)
\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow n-n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ....
c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
\((đpcm)\)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
1. a, \(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(A=-a+b-c+a+b+c\)
\(A=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(A=0+2b+0\)
\(A=2b\)
b, Thay \(a=1;b=-1;c=2\) ta có:
\(A=\left(-1+1-2\right)+\left(1+1-2\right)\)
\(A=-2+0=-2\)