Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\) (Vì xyz = 2017)
A = \(\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}\)
A = \(\dfrac{xz+1+z}{xz+1+z}\) = 1
Vậy A = 1
Cho ba số x , y , z thỏa mãn xyz = 2017
Tính tổng D = 2017x / xy + 2017x + 2017+ y/yz+y+2017+z/zx+z+1
thay xyz=2017, ta có:
\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{Bài làm }\)
\(\text{ Gọi xyz = 2017}\)
\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{# Chúc bạn học tốt #}\)
Theo đề bài ta có:
\(\left(x+y+z\right)\cdot\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=2017\cdot\dfrac{1}{672}\)
\(\Rightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow C=\dfrac{2017}{672}-3=\dfrac{1}{672}\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)
\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)
Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)
Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)
2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)
Bạn vào câu hỏi tương tự có nha, hoặc vào link này: https://hoc24.vn/hoi-dap/question/198034.html
\(D=\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
Vì \(xyz=2017\)
\(D=\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz+1+z}{1+xz+z}=1\)
Vậy D = 1