\(ax+by+cz=0\). Rút gọn biểu thức: \(A=\dfrac{bc(y-z)^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Từ (1); (2) và (3) ta được:

\(ax+by+by+cz+cz+ax=5a+5b+5c\)

\(\Leftrightarrow2\left(ax+by+cz\right)=5\left(a+b+c\right)\)

\(\Rightarrow a+b+c=\dfrac{2\left(ax+by+cz\right)}{5}\)

Ta có:

\(ax+by=5a\)

\(\Leftrightarrow ax+by+cz=5c+cz\)

\(\Leftrightarrow ax+by+cz=c\left(z+5\right)\)

\(\Rightarrow\dfrac{1}{z+5}=\dfrac{c}{ax+by+cz}\) (3)

Tượng tự ta có:

\(\dfrac{1}{x+5}=\dfrac{a}{ax+by+cz}\) (4)

\(\dfrac{1}{y+5}=\dfrac{b}{ax+by+cz}\)(5)

Từ (3);(4)và (5) \(\Rightarrow\dfrac{1}{x+5}+\dfrac{1}{y+5}+\dfrac{1}{z+5}=\dfrac{a+b+c}{ax+by+cz}\)

\(=\dfrac{\dfrac{2\left(ax+by+cz\right)}{5}}{ax+by+cz}=\dfrac{2}{5}\)

Vậy:....

5 tháng 7 2017

\(x^2-9x+1=0\Rightarrow x=9x-1\)

Ta có:

\(V=\dfrac{x^4+x^2+1}{5x^2}\)

\(=\dfrac{\left(x^2\right)^2+x^2+1}{5x^2}\)

\(=\dfrac{\left(9x-1\right)^2+9x-1+1}{5\left(9x-1\right)}=\dfrac{81x^2-18x+1+9x-1+1}{5\left(9x-1\right)}=\dfrac{81\left(9x-1\right)-9x+1}{5\left(9x-1\right)}=\dfrac{729x-81-9x+1}{5\left(9x-1\right)}\)\(=\dfrac{720x-80}{5\left(9x-1\right)}=\dfrac{80\left(9x-1\right)}{5\left(9x-1\right)}=16\)

9 tháng 1 2019

Đặt \(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} = k\)

<=> \(\dfrac{x}{m} =k <=> x = mk \)

<=> \(\dfrac{y}{n} = k <=> y =nk\)

<=> \(\dfrac{z}{p} = k <=> z = pk\)

Thay \(x = mk ; y=nk ; z=pk\) vào A , ta có :

\(\dfrac{(mk)^2+(nk)^2+(pk)^2}{(m^2k+n^2+p^2k)^2}\)

= \(\dfrac{m^2k^2+n^2k^2+p^2k^2}{(m^4k^2+n^4k^2+p^4k^2+2m^2n^2k^2+2n^2p^2k^2+2m^2p^2k^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^4+n^4+p^4+2m^2n^2+2n^2p+2m^2p^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^2+n^2+p^2)^2}\)

= \(\dfrac{1}{m^2+n^2+p^2} \)

Vậy A = \(\dfrac{1}{m^2+n^2+p^2}\)

19 tháng 7 2017

Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)

\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)

\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)

\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)

\(3a^2-5a-1=0\)

\(\Rightarrow f\left(a\right)=2011\)

Vậy...

8 tháng 8 2016

Bài 1

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Leftrightarrow x^3+y^3-3xyz=-z^3\) (vì x+y=-z)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)