Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a^3+b^3+c^3=3bac\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
=>2a^2+2b^2+2c^2-2ab-2ac-2bc=0
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
3/ \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
bài 1
theo bài ra ta có
a + b + c = 0 => c = -[a+b] [ 1 ]
Thay (1) vao a^3+b^3+c^3 ta có:
a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]
<=>a^3+b^3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
Bài 1:
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(............................\)
\(A=\left[\left(2^{256}\right)^2-1\right]+1=2^{512}\)
Ta có:\(x+y=a\)
=>\(x^2+2xy+y^2=a^2\)
=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)
Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)
=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)
=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)
b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
Bài 1 :
Ta có : a + b + c = 0
\(\Leftrightarrow\)a + b = - c
Ta có : a3 + b3 + c3
= ( a3 + b3 ) + c3
= ( a + b )3 - 3ab . ( a + b ) + c3 ( 1 )
Thay a + b = - c vào ( 1 ) , ta được :
- c3 - 3ab . ( - c ) + c3 = 3ab
Hay a3 + b3 + c3 = 3ab ( đpcm )