K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a+b+c=0\Rightarrow c=-\left(a+b\right);\left(1\right)\)

\(ab+bc+ca=0\Rightarrow ab+c\left(a+b\right)=0;\left(2\right)\)

(1)(2)=>\(ab=c^2\)

tương tự trên 

=>\(bc=a^2\)và \(ca=b^2\)

\(ab+bc+ca=0\Leftrightarrow c^2+a^2+b^2=0\Rightarrow a=b=c=0\)

=> M = 2

7 tháng 7 2021

Ta có : \(ab+bc+ca=0\)

<=> \(abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(\text{vì }a;b;c\ne0\right)\)

<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}.\left(-\frac{1}{c}\right)\left(\text{vì }\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\right)\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Khi đó \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

27 tháng 12 2020

c=c.1 thay 1 bằng a+b+c xong cô si

 

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

NV
21 tháng 8 2021

\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)

Tương tự:

\(b^4+3c^4\ge4bc^3\) ; \(c^4+3a^4\ge4ca^3\)

Cộng vế:

\(M\le a^4+b^4+c^4=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt[4]{3}}\)