K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

thay 1 bởi ab+bc+ca

ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

       \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

        \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ

4 tháng 7 2016

Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)

=a(a+b)+c(a+b)=(a+c)(a+b)

Tương tự, ta có:
b2+1=(b+a)(b+c) 
c2+1=(c+a)(c+b)

Do đó: 
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)

=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|

Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)