Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcd}\)
Không gian mẫu: \(n\left(\Omega\right)=6.5.4.3=360\)
\(\Rightarrow\left(a;b;c;d\right)=\left(1;2;3;6\right);\left(1;2;4;5\right);\left(1;3;5;6\right);\left(2;3;4;6\right);\left(3;4;5;6\right)\)
\(\Rightarrow5.4!=120\left(so\right)\) \(\Rightarrow n\left(A\right)=120\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n(\Omega)}=\dfrac{120}{360}=\dfrac{1}{3}\)
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
để có 4 chữ số khác nhau là số lẻ:
Gọi 4 chữ số là \(\overline{abcd}\)
d có 3 cách chọn {1; 3; 5} (vì là số lẻ)
a có 4 cách chọn số
b có 3 cách chọn số
c có 2 cách chọn số
Theo quy tắc đếm => 3x4x3x2 = 72 số
Gọi số cần tìm là \(\overline{a_1a_2a_3a_4}\)\(\in A=\left\{1;2;3;4;5\right\}\)\(;a_i\ne a_j\)
a)Số đó chia hết cho 2\(\Rightarrow\) Số đó chẵn.
Chọn \(a_4\in\left\{2;4\right\}\) có 2 cách chọn.
Chọn \(a_3\) có \(4\) cách.
Chọn \(a_2\) có 3 cách.
Chọn \(a_1\) có hai cách.
\(\Rightarrow\) Có tất cả \(2\cdot4\cdot3\cdot2=48\) số cần lập.
b)Các số tự nhiên có 4 cữ số khác nhau là chỉnh hợp chập 3 của 5.
\(\Rightarrow\) Có \(A_5^3\)=60 số.
Có tất cả \(60-48=12\) số lẻ cần lập.
sửa lại câu b
Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn
Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài
Xin lỗi bạn nhé
a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)
- Chọn a có 9 cách.
- Chọn b, c, d, e có \(A^4_9\) cách
⇒ Có: \(9.A^4_9=27216\) (số)
b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)
- Chọn e có 5 cách.
- Chọn a có 8 cách.
- Chọn b, c, d có \(A^3_8\) cách.
⇒ Có \(5.8.A^3_8=13440\) (số)