K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì : (x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2 2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1 3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n 4. Xác định a,b,c,d...
Đọc tiếp

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì :

(x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2

2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1

3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên

b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n

4. Xác định a,b,c,d biết ;

a) (ax2+bx+c)(x+3)=x3 +2x2-3x vs mọi x

b) x4+x3-x2+ax+b=(x2+x-2)(x2+cx+d) vs mọi x

5. Cho đa thức : f(x)=x(x+1)(x+2)(ax+b)

a) Xác định a,b để f(x)-f(x-1)=x(x+1)(2x+1) vs mọi x

b) Tính tổng S = 1.2.3+2.3.5+...+n(n+1)(2n+1) theo n (vs n là số nguyên dương )

6.Xác định a,b,c để :

X3-ax2+bx-c=(x-a)(x-b)(x-c) vs mọi x

Mong các bn giải dùm mk nhanh nhanh mk cần gấp nha ! thank you

1

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

26 tháng 10 2022

Bài 3:

a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)

b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)

phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng : Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với...
Đọc tiếp

phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : 

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

 

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3.  

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = 

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 

Tính : P = 

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

đố tí ko cần giải cụ thể vì mình ko cần nhưng giải cụ thể like nhưng mình ko mún hỏi chỉ đố thui

0