\(\frac{5}{n-3}\) với n \(\in\) Z

6) T...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2015

tui pit pai 2 y a.neu muon pit thi like like like

27 tháng 3 2015

trả lời meo like ùi cũng pít câu like đó à nka

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

13 tháng 2 2018

Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)

 Lập luận

+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)

=> n thuộc tập N*

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
23 tháng 2 2019

Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5

   suy ra (n+8).2 chia hết cho n+8 hay2n+16

Suy ra (2n+16)-(2n-5) chian hết cho 2n-5

suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}

                                                 suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}

                                                suy ra n thuộc{-8;13;4;1;6;-1;3;2}

Vậy n thuộc{-8;13;4;1;6;-1;3;2}

                                        

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)