Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{308}\)+ \(\frac{1}{309}\)
B = \(\frac{308}{1}\)+ \(\frac{307}{2}\)+ \(\frac{306}{3}\)+\(\frac{3}{306}\) + \(\frac{2}{307}\)+ \(\frac{1}{308}\)
=> B = \(\frac{309-1}{1}\)+ \(\frac{309-3}{3}\)+... + ( 309 ... )
=> B = 309 + 309 . ( \(\frac{1}{2}\) + \(\frac{1}{3}\)+... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\)- \(\frac{1}{1}\)+ \(\frac{2}{2}\)+ ... + \(\frac{308}{308}\)+ \(\frac{309}{309}\)
=> B = 309 . ( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ ... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\))
=> \(\frac{A}{B}\)= \(\frac{1}{309}\)
Ta có :
\(B=\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+...+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\)
\(B=\left(\frac{307}{2}+1\right)+\left(\frac{306}{3}+1\right)+...+\left(\frac{3}{306}+1\right)+\left(\frac{2}{307}+1\right)+\left(\frac{1}{308}+1\right)+1\)
\(B=\frac{309}{2}+\frac{309}{3}+...+\frac{309}{306}+\frac{309}{307}+\frac{309}{308}+\frac{309}{309}\)
\(B=309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{306}+\frac{1}{307}+\frac{1}{308}+\frac{1}{309}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{308}+\frac{1}{309}}{309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{308}+\frac{1}{309}\right)}\)
\(\frac{A}{B}=\frac{1}{309}\)
\(B=308/1+307/2+306/3+...+1/308 \)
\(B=308+307/2+306/3+...+1/308\) chia số 308 thành 308 số 1
B=307/2+1+306/3+1+...+1/308+1+1
B=309/2+309/3+309/4+...+309/308+309/309
B=309(1/2+1/3+1/4+...+1/309)=309A
Suy ra A/B=1/309
=(1/2+1/31/4...1/307/1/3081/309)/(309-1/1+309-2/2+...+309-307/307+309-308/308)
=(1/21/31/4...1/3071/3081/309)/(309/1-1+309/2-1+...+309/307-1+309/308-1)
=(........................................)/(309/309309/2309/3...309/307+309/308)
=(........................................)/[309x(1/309+1/308+...+1/41/31/2)]
Thấy tử và mẫu giống nhau thì ta rút:
=1/309
a. Ta có :
B = 308/1 + 307/2 +306/3+....+1/308
B = (1+1+....+1) + 307/2 + ....+ 1/308
B = (1 + 307/2) + (1+306/3) + ...+ (1+ 1/308) + 1
B = 309/2 + 309/3 + ....+ 309/308 + 309/309
B = 309.(1/2 + 1/3 + ....+1/309)
Vậy A/B: 1/2 + 1/3 + ... + 1/309 / 308/1 + 307/2 +....+ 2/307+1/308
A/B = 1/2 + 1/3 +... + 1/309 / 309.(1/2 + 1/3 + ....+1/309)
A/B = 1/309
b.7/10.11 + 7/11.12 + .... +7 /69.70
= 7. (1/10.11+1/11.12 + ...+ 1/69.70)
= 7.(1/10-1/11+1/11-1/12+....+1/69-1/70)
= 7.(1/10 - 1/70)
= 7. 3/35
= 3/5
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
Từng bài 1 thôi bn!
b2: \(\frac{a}{b}\cdot\frac{c}{d}=\frac{2}{5}\left(1\right)\Rightarrow\frac{ac}{bd}=\frac{2}{5}\left(3\right)\)
\(\frac{a}{b}\cdot\left(\frac{c}{d}+3\right)\left(2\right)\Rightarrow\frac{ac}{bd}+\frac{3a}{b}=\frac{28}{15}\left(4\right)\)
(4) thành \(\frac{2}{5}+\frac{3a}{b}=\frac{28}{15}\Rightarrow\frac{a}{b}=\frac{22}{45}\)
(1) thành \(\frac{22}{45}\cdot\frac{c}{d}=\frac{2}{5}\Rightarrow\frac{c}{d}=\frac{9}{11}\)
2a)
Gọi số cần tìm là abc.
Để abc = a.
Theo đề bài, ta có: a chia 25 dư 5 => a - 20 chia hết cho 25
a chia 28 dư 8 => a - 20 chia hết cho 28
a chia 35 dư 15 => a - 20 chia hết cho 35
Vậy a - 20 \(\in\)BC (25, 28, 35)
25 = 52
28 = 22 . 7
35 = 5 . 7
BCNN (25, 28, 35) = 52 . 22 . 7 = 700
a - 20 \(\in\)BC (25, 28, 35)
mà BC (25, 28, 35) = B (700)
nên a - 20 \(\in\) B (700) = {0 ; 700 ; 1400 ; 2800 ; ...}
Vậy a \(\in\){680 ; 1380 ; 2780 ; ...}
mà a là số có ba chữ số.
=> abc = 680.
Vậy số tự nhiên cần tìm là 680.