K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

3/4 +3 =

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

21 tháng 7 2016

Ta có 

M=3 +32+33+....+399+3100

=> \(.M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

=> \(M=12\left(1\right)+12\left(9\right)+...+12\left(...\right)\)

=> M chia hết cho 12 ( cái cuối bạn tự tính đi mình ko muốn tính :) )

cái còn lại tự làm tương tự thôi

Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

\(=\overline{......0}\)

\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)

Bài 3:

a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=31+2^4.31+...+2^{96}.31\)

\(=31\left(1+2^4+...+2^{96}\right)⋮31\)

\(\Rightarrow\)\(đpcm\)

b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)

\(\Rightarrow C=2^{101}-2\)

Mà \(2^{2x}-2=C\)

\(\Rightarrow2^{2x}-2=2^{101}-2\)

\(\Rightarrow2^{2x}=2^{101}\)

\(\Rightarrow2x=101\)

\(\Rightarrow x=\frac{101}{2}\)

Vậy \(x=\frac{101}{2}\)

Bài 2:

Ta có : \(\overline{abcd}=1000a+100b+10c+d\)

\(=1000a+96b+8c+\left(d+2c+4b\right)\)

\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)

Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)

\(\Rightarrow\overline{abcd}⋮8\)

\(\Rightarrowđpcm\)

Bài 1:Cho A = 21 + 22 + 23 + ... + 220Cho B = 31 + 32 + 33 + ... + 3300a) Tìm chữ số tận cùng của A.b) Chứng minh rằng B chia hết cho 2.c) Chứng minh rằng B - A chia hết cho 5.Bài 2 : Chứng minh rằng:a) 301293 - 1 chia hết cho 9b) 2093n - 803n - 464n - 261n chia hết cho 271c) 62n + 3n+2 . 3n chia hết cho 11d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh...
Đọc tiếp

Bài 1:

Cho A = 21 + 22 + 23 + ... + 220

Cho B = 31 + 32 + 33 + ... + 3300

a) Tìm chữ số tận cùng của A.

b) Chứng minh rằng B chia hết cho 2.

c) Chứng minh rằng B - A chia hết cho 5.

Bài 2 : Chứng minh rằng:

a) 301293 - 1 chia hết cho 9

b) 2093n - 803n - 464- 261chia hết cho 271

c) 62n + 3n+2 . 3n chia hết cho 11

d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)

Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh nhật lần thứ 15 của mình. Biết rằng ngày 1 thắng 1 năm 2008 là ngày thứ 3.

a, Hãy tính xem bạn Nam sinh vào ngày thứ mấy.

b, Bạn Nam sẽ tổ chức sinh nhật lần thứ 15 vào ngày thứ mấy?

Bài 4:

So sánh các số sau:

a) 3281 và 3190

b) 11022009 - 11022008 và 11022008 - 11022007

c) A = ( 20082007 + 20072007)2008 và B = ( 20082008 + 200720082007

Bài 5: Tính tổng sau bằng cách hợp lí.

a) A = 21 + 22 + 23 + 24 +....+ 2100

b) B = 1 + 3 + 32 + .....+ 32009

c) C = 1 + 5 + 52 + 53... + 51998

d) D = 4 + 42 + 43 + ... + 4n


Bài 6: Cho A = 1 + 2 + 22 + 23 + 24 + ... + 2200. Hãy viết A + 1 dưới dạng một lũy thừa.

Bài 7 : Cho B = 3 + 32 + 33 + ... + 32005 . Chứng minh rằng 2B + 3 là lũy thừa của 3.

Bài 8 : Chứng minh rằng

a) 55 - 54 + 53 chia hết cho 7 .

b) 7+ 75 - 74 chia hết cho 11.

c, 10+ 108 + 107 chia hết cho 222.

d, 10- 5chia hết cho 59.

e, 3n+2 . 2n+2 + 3n - 2n chia hết cho 10 ( n thuộc N*).

f, 81- 279 - 913 chia hết cho 45.

7
5 tháng 12 2019

Vừa vừa thôi man,làm hết đó không khác gì nô lệ của bạn

lm 1 ít thui =>2A=

A = 21 + 22 + 23 + ... + 220

 =>2A=22+23+24+...+221

=>A=221-21

11 tháng 10 2015

2)

a)Ta có: 2m+5=n.(m-1)

=> 2m+5=nm-n

=>2m+5-nm+n=0

=>(2-n).m+5+n=0

=>(2-n).m-(2-n)+5+2=0

=>(2-n).(m-1)+7=0

=>(2-n).(m-1)=-7=-1.7=-7.1

Ta có bảng sau:

2-n

1

-7

-1

7

n

1

9

3

-5

m-1

-7

1

7

-1

m

-6

2

8

0

Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)