Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2+2b^2-7ab=0\)
\(\Leftrightarrow3a^2-6ab-ab+2b^2=0\)
\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-2b\right)=0\)
Mà \(3a>b>0\)nên \(3a-b>0\)
Vậy \(a-2b=0\Leftrightarrow a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{1}\)
Đặt \(\frac{a}{2}=\frac{b}{1}=k\Rightarrow\hept{\begin{cases}a=2k\\b=k\end{cases}}\)
\(\Rightarrow P=\frac{2005.2k-2006.k}{2006.2k+2007.k}=\frac{2004k}{6019k}=\frac{2004}{6019}\)
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
bài 1: Gọi 2 số chính phương liên tiếp là a\(^2\) và (a+1)\(^2\)( vs a\(\in\) N )
CM :S=a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+1)\(^2\) là số chính phương
Thật vậy : S= a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+2a+1)
= a\(^2\)+a\(^2\)+2a+1+a\(^4\)+2a\(^3\)+a\(^2\)
= (a\(^2\))\(^2\)+a\(^2\)+1\(^2\)+2.a\(^2\).a+a+2a\(^2\).1+2a.1
= (a\(^2\)+a+1)\(^2\) là số chính phương (đpcm)
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) ⇒ 10n =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
Ta có: 2006a + 2006b = 2007a + 2006b = 4029052(1)
=>2007a+2006b-2006a-2006b=0
=>a=0.
Thay a=0 vào (1) ta dc:
2006a + 2006b = 2007a + 2006b = 4029052
=>2006.0+2006b=2007.0+2006b=4029052
=>0+2006b=0+2006b=4029052
=>2006b=4029052
=>b=4029052:2006
=>b=\(\frac{2014526}{1003}.\)
Hay b là số chính phương
Mà a=0
=>a+b là số chính phương.
=> a + b + 201 là số chính phương(đpcm).