K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{DC}\)

=>vecto AB=vecto DC

=>ABCD là hình bình hành

b: \(\Leftrightarrow\overrightarrow{DB}-\overrightarrow{DA}=2\cdot\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{DB}=2\cdot\overrightarrow{DC}\)

=>vecto AB=2 vecto DC

=>ABCD là hình thang

15 tháng 8 2018

1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html

câu 2 cũng chả khác gì cả

1 tháng 4 2017

a) Ta có, theo quy tắc ba điểm của phép trừ:

= - (1)

Mặt khác, = (2)

Từ (1) và (2) suy ra:

= - .

b) Ta có : = - (1)

= (2)

Từ (1) và (2) cho ta:

= - .

c) Ta có :

- = (1)

- = (2)

= (3)

Từ (1), (2), (3) suy ra đpcm.

d) - + = ( - ) + = + = + ( vì = ) =

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng quy tắc ba điểm ta có:

\(\overrightarrow a  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \); \(\overrightarrow b  = \overrightarrow {DB}  + \overrightarrow {BC}  = \overrightarrow {DC} \)

Mà ABCD là hình thang nên AB//DC. Mặt khác vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {DC} \) đều có hướng từ trái sang phải, suy ra vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {DC} \)cùng hướng

Vậy hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.

NV
28 tháng 9 2019

\(\overrightarrow{CC'}=\overrightarrow{CB}+\overrightarrow{BB'}+\overrightarrow{B'C'}=\overrightarrow{BB'}+\overrightarrow{DA}+\overrightarrow{AD'}=\overrightarrow{BB'}+\overrightarrow{DD'}\)

\(\Rightarrow\overrightarrow{CC}'=-\overrightarrow{B'B}-\overrightarrow{D'D}\)

\(\Rightarrow\overrightarrow{B'B}+\overrightarrow{CC'}+\overrightarrow{D'D}=\overrightarrow{B'B}-\overrightarrow{B'B}-\overrightarrow{D'D}+\overrightarrow{D'D}=\overrightarrow{0}\)

13 tháng 9 2021

C

NV
13 tháng 11 2019

\(\overrightarrow{AA'}=\overrightarrow{AO}+\overrightarrow{OO'}+\overrightarrow{O'A'}\)

Tách tương tự với 3 số hạng còn lại sau đó cộng vế với vế và chú ý rằng: \(\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0};\) \(\overrightarrow{BO}+\overrightarrow{DO}=\overrightarrow{0}\); \(\overrightarrow{O'A'}+\overrightarrow{O'C'}=\overrightarrow{0}\) ; \(\overrightarrow{O'B'}+\overrightarrow{O'D'}=\overrightarrow{0}\) theo tính chất hình bình hành ta sẽ có đpcm