K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Bài 1 :

a, - Gọi phương trình đường thẳng AB là \(y=ax+b\)

- Thay \(x=1,y=2\) vào phương trình trên ta được :

\(a+b=2\) ( I )

- Thay \(x=3,y=4\) vào phương trình trên ta được :

\(3a+b=4\left(II\right)\)

- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}a+b=2\\3a+b=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=2-b\\3\left(2-b\right)+b=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=2-b\\6-3b+b=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=2-b\\-2b=-2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=2-1=1\\b=1\end{matrix}\right.\)

- Thay \(a=1,b=1\) vào phương trình ( I ) ta được :

\(y=x+1\)

b, - Gỉa sử tọa độ của điểm M là \(\left(x_1;y_1\right)\)

Mà điểm M nằm trên trục tung nên hoành độ của nó bằng 0 .

=> Tọa độ của điểm M là : \(\left(0;y_1\right)\)

Ta có : \(\overrightarrow{AB}\left(1;1\right)\)\(\overrightarrow{AM}\left(0-1;y_1-2\right)\)

- Để 3 điểm A; B; M thẳng hàng thì \(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{AM}\)

=> \(\frac{1}{-1}=\frac{1}{y_1-2}\)

=> \(y_1-2=-1\)

=> \(y_1=1\)

Vậy tọa độ của điểm M \(\left(0;1\right)\)

20 tháng 3 2020

- Để hệ phương trình có nghiệm duy nhất thì :

\(\frac{1}{m}\ne\frac{-1}{-1}\ne1\left(m\ne0\right)\)

=> \(m\ne1\)

- Ta có hệ phương trình : \(\left\{{}\begin{matrix}x-y=2\\mx-y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+y\\m\left(2+y\right)-y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+y\\2m+my-y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+\frac{3-2m}{m-1}=\frac{2\left(m-1\right)+\left(3-2m\right)}{m-1}=\frac{2m-2+3-2m}{m-1}=\frac{1}{m-1}\\y=\frac{3-2m}{m-1}\end{matrix}\right.\)

- Để hệ phương trình thuộc góc phần tư thứ nhất thì :

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) ( I )

- Thay \(x=\frac{1}{m-1};y=\frac{3-2m}{m-1}\) vào ( I ) ta được :

\(\left\{{}\begin{matrix}\frac{1}{m-1}>0\\\frac{3-2m}{m-1}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m-1>0\\3-2m>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m-1>0\\3-2m>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m>1\\m< \frac{3}{2}\end{matrix}\right.\)

=> \(1< m< \frac{3}{2}\)

Vậy để hệ phương trình trên thuộc góc phần tư số 1 thì \(1< m< \frac{3}{2}\)

30 tháng 12 2019

Ta có :

\(\left\{{}\begin{matrix}mx+2my=m+1\\x+\left(m+1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m\left(2-ym+y\right)+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\2m-m-1=ym^2-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m-1=y\left(m^2-1\right)\end{matrix}\right.\)

Để pt có nghiệm duy nhất :

\(\Leftrightarrow m^2-1\ne0\)

\(\Leftrightarrow\left(m-1\right)\left(m+1\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)

Khi đó pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=1\\y=\frac{1}{m+1}\end{matrix}\right.\)

Vậy..

1/ Ta có : \(M\left(x,y\right)\) thuộc góc phần tư thứ nhất

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(luônđúng\right)\\\frac{1}{m+1}>0\end{matrix}\right.\) \(\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Vậy....

30 tháng 12 2019

helloooo =))

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


10 tháng 3 2021

dễ lắm áp dụng công thức là ra

 

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Lời giải:

Khi \(m=-\sqrt{2}\). HPT tương đương:

\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)

Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)

\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)

b)

\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)

\(\Rightarrow mx+[(m+1)x-3]=m\)

\(\Leftrightarrow x(2m+1)=m+3\)

Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.

Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)

Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)

\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)

Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)

Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)

\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)

Vậy đk là \(m> \frac{-1}{2}\)

Bài 1 cho hệ \(\left\{{}\begin{matrix}x+my=2\\mx+y=m+1\end{matrix}\right.\) a. chứng tỏ rằng \(\forall m\ne\pm1\)hệ luôn có nghiệm duy nhất b. tìm giá trị của m để hệ có nghiệm (x;y) thỏa mãn x+y <0 c. với giá trị nguyên nào của m thì hệ có nghiệm nguyên duy nhất Bài 2 cho hệ \(\left\{{}\begin{matrix}\left(m+1\right)x-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\) \(\forall m\in R\) a. giải hệ khi m=-3 b. tìm...
Đọc tiếp

Bài 1

cho hệ \(\left\{{}\begin{matrix}x+my=2\\mx+y=m+1\end{matrix}\right.\)

a. chứng tỏ rằng \(\forall m\ne\pm1\)hệ luôn có nghiệm duy nhất

b. tìm giá trị của m để hệ có nghiệm (x;y) thỏa mãn x+y <0

c. với giá trị nguyên nào của m thì hệ có nghiệm nguyên duy nhất

Bài 2

cho hệ \(\left\{{}\begin{matrix}\left(m+1\right)x-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\) \(\forall m\in R\)

a. giải hệ khi m=-3

b. tìm điều kiện của m để hệ phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó

Bài 3

cho hệ \(\left\{{}\begin{matrix}-m^2x+4y=m\\-x+2y=2\sqrt{2}\end{matrix}\right.\) (1)

a. giải hệ khi m=1 (2)

b. với giá trị nào của m thì hệ phương trình có nghiệm duy nhất

c. tìm giá trị của m để hai đường thẳng (1) (2) của hệ cắt nhau tại một điểm thuộc góc phần tư thứ II của hệ trục Oxy

0
2 tháng 2 2017

\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=\frac{m+1}{m}\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m-1\right)y=2-\frac{m+1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)y=\frac{m-1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}}\)

bình thường dùng pp thế nhưng chắc bài này cộng là nhanh nhất rồi ( ͡° ͜ʖ ͡°) 

với m=1 thì y vô số nghiệm => x vô số nghiệm thỏa mãn pt dưới

Với \(m\ne1\Rightarrow y=\frac{1}{m}\Rightarrow x=\frac{m+1}{m}-\frac{2}{m}=\frac{m-1}{m}\)

b/ \(A\left(\frac{m-1}{m};\frac{1}{m}\right)\)

I/Vì x=1-y nên A luôn nằm trên đồ thị hàm số x=1-y

II/ Để A thuộc góc phân tư thứ nhất thì x>0, y>0, \(\Leftrightarrow\hept{\begin{cases}1-\frac{1}{m}>0\\\frac{1}{m}>0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{m}< 1\\m>0\end{cases}\Leftrightarrow}m>1}\)

Vậy với m>1 thì A thuộc góc phần tư thứ nhất

III/ Cái này thì bạn tự vẽ hình, kẻ đường cao xuống rồi dùng hệ thức lượng liên hệ giữa đường cao và cạnh góc vuông tính  

2 tháng 2 2017

Chưa hok

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r