Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
Bài giải:
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
1 TA thấy S có 1000 số hạng
Nấu ghép cặp thì có 1000:2=500(cặp)
S=(2-4)+(6-8)+......+(1998-2000)
S=(-2)+(-2)+(-2)+...........+(-2)
S=(-2).500
S=-1000
còn mấy bài sau thì cậu phá ngoặc ra là giải dc
a) Ta có: |a| \(\ge\) 0 với mọi a
|b| \(\ge\) 0 với mọi b
Mà |a| + |b| = 0
=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Vậy a = 0; b = 0
b) Ta có:
|a + 5| \(\ge\) 0 với mọi a
|b - 2| \(\ge\) 0 với mọi b
Mà |a + 5| + |b - 2| = 0
=> \(\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)
Vậy a = -5; b = 2
Vì \(\left|a\right|\ge0;\left|b\right|\ge0\)
\(\Rightarrow\left|a\right|+\left|b\right|\ge0\)
Mà : \(\left|a\right|+\left|b\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|=0\\\left|b\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Vậy a = 0 , b = 0
b, Vì \(\left|a+5\right|\ge0;\left|b-2\right|\ge0\)
\(\Rightarrow\left|a+5\right|+\left|b-2\right|\ge0\)
Mà : \(\left|a+5\right|+\left|b-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a+5\right|=0\\\left|b-2\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)
Vậy a = -5 ; b = 2
Bài 2:
Tổng các số nghịch đảo là:
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+\dfrac{1}{14\cdot17}+\dfrac{1}{17\cdot20}\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10-1}{20}=\dfrac{9}{60}=\dfrac{3}{20}\)