\(\left(2x-4\right)\left(\dfrac{7x+2}{5}+\dfrac{2\left(1-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: =>(2x-1)(2x-1+4-2x)=0

=>3(2x-1)=0

=>2x-1=0

=>x=1/2

c: =>(x+1)(x^2-x+1)-x(x+1)=0

=>(x+1)(x-1)^2=0

=>x=1 hoặc x=-1

e: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

h: =>x[(x^2-5)^2-4]=0

=>x(x^2-7)(x^2-3)=0

=>\(x\in\left\{0;\pm\sqrt{7};\pm\sqrt{3}\right\}\)

k: =>(x-1)(5x+3-3x+8)=0

=>(x-1)(2x+11)=0

=>x=1 hoặc x=-11/2

l: =>x^2(x+1)+(x+1)=0

=>(x+1)(x^2+1)=0

=>x+1=0

=>x=-1

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

giúp mk với tứ tư mk phải nộp rùi bài 1: a, \(2x\left(3x^2-5x+3\right)\) b, \(-2x\left(x^2+5x-3\right)\) c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\) bài 2: a,\(\left(2x-1\right).\left(x^2-5-4\right)\) b,\(-\left(5x-4\right).\left(2x+3\right)\) c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\) d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\) e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\) bài 3: c/m rằng gtri của...
Đọc tiếp

giúp mk với tứ tư mk phải nộp rùi

bài 1:

a, \(2x\left(3x^2-5x+3\right)\)

b, \(-2x\left(x^2+5x-3\right)\)

c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)

bài 2:

a,\(\left(2x-1\right).\left(x^2-5-4\right)\)

b,\(-\left(5x-4\right).\left(2x+3\right)\)

c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)

d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)

e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)

bài 3:

c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến

a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

bài 4 :tìm x biết

a, \(3x+2\left(5-x\right)=0\)

b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)

c,\(3x^2-3x\left(x-2\right)=36\)

d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)

4
11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

1: =>2x-5=4 hoặc 2x-5=-4

=>2x=9 hoặc 2x=1

=>x=9/2hoặc x=1/2

2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)

3: \(\Leftrightarrow\left|5x-3\right|=x+5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

9 tháng 8 2018

giups mình với các bạn,thứ 7 này mink phải nộp rồi

9 tháng 8 2018

Hướng dẫn thôi nha bạn.

Giải:

Bài 1.

- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)

VD: Câu a)

\(2x\left(x^2-7x-3\right)\)

\(=2x.x^2-2x.7x-2x.3\)

\(=2x^3-14x^2-6x\)

- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)

VD: Câu e)

\(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)

\(=x^3-4x^2-2x^2+8x+3x-12\)

\(=x^3-6x^2+11x-12\)

Bài 2.

Áp dụng hằng đẳng thức (số 1 và số 2)

VD: \(892^2+892.216+108^2\)

\(=892^2+2.892.108+108^2\)

\(=\left(892+108\right)^2\)

\(=1000^2=1000000\)

Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.

VD: Câu a)

\(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Bài 4: Áp dụng hằng đẳng thức

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-x^3-54+x\)

\(\Leftrightarrow M=-27+x\)

Thay \(x=27\)

\(\Leftrightarrow M=-27+27=0\)

Vậy ...

26 tháng 2 2022

hic, mk chx học