Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
\(e)\) \(\left|2x-3\right|=x-1\)
Ta có :
\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)
Mà \(\left|2x-3\right|=x-1\)
\(\Rightarrow\)\(x-1\ge0\)
\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)
Chúc bạn học tốt ~
\(f)\) \(\left|x-5\right|-5=7\)
\(\Leftrightarrow\)\(\left|x-5\right|=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)
Vậy \(x=17\) hoặc \(x=-7\)
Chúc bạn học tốt ~
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
1. Thay x = -5 vào phương trình
\(-10m=\frac{1}{2m}+30\Rightarrow-10m-\frac{1}{2m}-30=0\Rightarrow\frac{20m^2-1-60m}{2m}=0\)
\(\Rightarrow20m^2-60m-1=0\Rightarrow20\left(m^2-3m+\frac{9}{4}\right)=46\Rightarrow\left(m-\frac{3}{2}\right)^2=46\)
\(\Rightarrow m-\frac{3}{2}=\sqrt{46}\Rightarrow m=\sqrt{46}+\frac{3}{2}\)
2) Tìm nghiệm của phương trình
\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)=3\), có nghiệm của \(6x-5m=3+3m\) gấp 3 lần, bài toán lại quay trở về giống như bài trên
3.a)\(\Leftrightarrow9x^2+54x-9x^2+6x-1=1\)
\(\Leftrightarrow60x=2\Leftrightarrow x=\frac{1}{30}\)
Vậy pt có tập nghiệm là S=\(\left\{\frac{1}{30}\right\}\).
b)\(\Leftrightarrow32x-16x^2-16x^2+40x-25=2\)
\(\Leftrightarrow-32x^2+72x-27=0\)
\(\Leftrightarrow32x^2-72x+27=0\)
Có: \(\Delta=\left(-72\right)^2-4.32.27=1728\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{72+\sqrt{1728}}{64}\\x_2=\frac{72-\sqrt{1728}}{64}\end{matrix}\right.\)
c) Δ\(=\left(-7\right)^2+4.3=\sqrt{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{7+\sqrt{61}}{6}\\x_2=\frac{7-\sqrt{61}}{6}\end{matrix}\right.\)
Câu hỏi của Nguyễn Kim Oanh - Địa lý lớp 0 | Học trực tuyến
Câu trả lời thứ 800.
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
1)
a)
\(2x+5=20+3x\\ \Leftrightarrow2x+5-20-3x=0\\ \Leftrightarrow-x-15=0\\ \Rightarrow x=-15\)
b)
\(2.5y+1.5=2.7y-1.5c\cdot2t-\frac{3}{5}=\frac{2}{3}-t\\ \Leftrightarrow2.5y+1.5-2.7y+3ct+\frac{3}{5}-\frac{2}{3}+t=0\\ \Leftrightarrow-0.2y+\frac{43}{30}+3ct+t=0\)
2)
a)
\(\frac{5x-4}{2}=\frac{16x+1}{7}\\ \Leftrightarrow\frac{35x-28}{14}-\frac{32x+2}{14}=0\\ \Leftrightarrow\frac{35x-28-32x-2}{14}=0\\ \Leftrightarrow\frac{3x-30}{14}=0\\ \Rightarrow3x-30=0\\ \Rightarrow x=10\)
b)
\(\frac{12x+5}{3}=\frac{2x-7}{4}\\ \Leftrightarrow\frac{48x+20}{12}-\frac{6x-21}{14}=0\\ \Leftrightarrow\frac{48x+20-6x+21}{12}=0\\ \Leftrightarrow\frac{42x+41}{12}=0\\ \Rightarrow42x+41=0\\ \Rightarrow x=-\frac{41}{42}\)
3)
a)
\(\left(x-1\right)^2-9=0\\ \Leftrightarrow\left(x-1-3\right)\cdot\left(x-1+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Bài 1:
a/ \(x^2+2x+1+z^2+12z+36+1=\left(x+1\right)^2+\left(z+6\right)^2+1>0\) (đpcm)
b/ Câu này đề sai, hoặc là 14y là 4y hoặc là số cuối là 1 số to hơn 16 nhiều
Bài 2:
a/ ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow12=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+2x-15=12\)
\(\Leftrightarrow x^2+2x-27=0\Rightarrow x=-1\pm2\sqrt{7}\)
b/ \(\Leftrightarrow\frac{7x}{2}-\frac{x}{3}=-\frac{6}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{19}{6}x=-\frac{3}{2}\Rightarrow x=-\frac{9}{19}\)
c/ \(\Leftrightarrow\frac{x}{3}-\frac{x}{4}=6-\frac{1}{5}-\frac{1}{2}+\frac{2}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{29}{5}\Rightarrow x=\frac{348}{5}\)