Bài 1. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

a) 11 = \(\sqrt{121}\)>\(\sqrt{99}\)

b) <

9 tháng 11 2015

Trần Nguyễn Hoàng Yến đúng koavt349845_60by60.jpg

NM
4 tháng 8 2021

a. \(\sqrt{4x}+\sqrt{x}=2\Leftrightarrow2\sqrt{x}+\sqrt{x}=2\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)

b. \(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\x\ge2\end{cases}}\Leftrightarrow x=2\)\(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\x\ge2\end{cases}}\Leftrightarrow x=2\)

c.\(\sqrt{x^2-2x}+\sqrt{2x^2+4x}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x+2x^2+4x+2\sqrt{x^2-2x}.\sqrt{2x^2+4x}=4x^2\end{cases}}\)

\(\Rightarrow x^2-2x=2\sqrt{x^2-2x}.\sqrt{2x^2+4x}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-2x}=0\\\sqrt{x^2-2x}=2\sqrt{2x^2+4x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\text{ hoặc }x=2\\x^2-2x=8x^2+16x\end{cases}\Leftrightarrow}\)hoặc x=0 hoặc x=2 hoặc x= -18/7

Kết hợp điều kiện ta có : \(x=0\text{ hoặc }x=2\)

d. Điều kiện \(x\ge3\) ta có :

\(\sqrt{x^2+2x-15}=\sqrt{x-3}+\sqrt{x^2-3x}\Leftrightarrow x^2+2x-15=x^2-2x-3+2\sqrt{x-3}\sqrt{x^2-3x}\)

\(\Leftrightarrow2x-6=\sqrt{x-3}.\sqrt{x^2-3x}\Leftrightarrow4\left(x-3\right)^2=\left(x-3\right)\left(x^2-3x\right)\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

25 tháng 8 2021

\(5x^2+24x+19=0\)

\(\Leftrightarrow5x^2+5x+19x+19=0\)

\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)

Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)

Tìm nghiệm của phương trình

 5x^2 + 24x + 19 = 0 

 5x^2 + 5x + 19x + 19 = 0 

5x(x+1 ) ( 5x + 19 ) = 0 

x + 1 = 0 

5x + 19 = 0 

x = -1 

x = -19/5 

vậy S = { -1 ; -19/5 }

17 tháng 10 2018

thế biểu thức A đâu b

25 tháng 7 2017

Bài 1 tìm điều kiện của x để biểu thức sau có nghĩa :

a) \sqrt{4-3x}

ĐKXĐ : 4 - 3x \(\ge0\) <=> -3x \(\ge-4\Rightarrow x\le\dfrac{4}{3}\)

Vậy ĐKXĐ của x là x \(\le\dfrac{4}{3}\) để biểu thức \(\sqrt{4-3x}\) được xác định

b) \sqrt{\frac{-2}{1+2x}}

ĐKXĐ : \(-\dfrac{2}{1+2x}\ge0\) . Vì -2 < 0 nên => 1 + 2x < 0 <=> 2x < -1 => x < - \(\dfrac{1}{2}\)

Vậy ĐKXĐ của x là \(x< -\dfrac{1}{2}\)

c) \(\sqrt{7x}-\sqrt{2x-3}\)

Vì 7 > 0 nên => x > 0

ĐKXĐ : 2x - 3 \(\ge0\) <=> 2x \(\ge3=>x\ge\dfrac{3}{2}\)

Vậy ĐKXĐ của x là x > 0 và x \(\ge\dfrac{3}{2}\)

d) \sqrt{\frac{5}{2x+5}}+\frac{x-1}{x+2}

Ta có ĐKXĐ : \(\sqrt{\dfrac{5}{2x+5}}\) \(\ge0\) mà vì 5 > 0 nên => 2x + 5 > 0 <=> 2x > - 5 => x > \(-\dfrac{5}{2}\)

Ta có ĐKXĐ : \(\dfrac{x-1}{x+2}\ge0\) ; x + 2 > 0 => x \(\ne-2\)

Ta có BXD :

x x-1 x+2 -2 1 0 0 0 - - + - + + + + - (x-1)/(x+2)

=> \(x< -2\) hoặc x \(\ge1\)

Vậy ĐKXĐ của x là : x > - \(\dfrac{5}{2}\) ; x < -2 hoặc x \(\ge1\)

25 tháng 7 2017

mình sửa lại câu b là bỏ đi dấu "=" nhé!

Câu d) ĐK:\(\left\{{}\begin{matrix}\dfrac{5}{2x+5}\ge0\\x+2\ne0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x+5>0\\x\ne-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x\ne-2\end{matrix}\right.\)

21 tháng 7 2016

1)Nếu x-1 >= 0 thì x>=1

=>x2 – 3x + 2 + |x – 1| = 0

<=>x2-3x+2+x-1=0

<=>x2-2x+1=0

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy S={1}

21 tháng 7 2016

2 ) ĐKXĐ:

x(x-2)0

<=>x0 và x-20

<=>x0 và x2

\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)

=>x(x+2)-(x-2)-2=0

<=>x2+2x-x+2-2=0

<=>x2+x=0

<=>x(x+1)=0

<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0

<=>x=-1

Vậy S={-1}

11 tháng 7 2016

\(a.\left(2-\sqrt{3}+\sqrt{5}\right)\left(2-\sqrt{5}+\sqrt{3}\right)\)

\(=4-\left(\sqrt{3}-\sqrt{5}\right)^2\)

\(=4-3+2\sqrt{15}-5\)

\(=2\sqrt{15}-4\)

\(b.2\sqrt{3}\left(\sqrt{3}-3\right)-\left(3\sqrt{3}-1\right)^2\)

\(=6-6\sqrt{3}-27+6\sqrt{3}-1\)

\(=-22\)

ok

 

Câu 1:Khi phương trình có một nghiệm là thì nghiệm còn lại của phương trình là = Nhập kết quả dưới dạng số thập phân gọn nhất. Câu 2:Nghiệm của phương trình là = Câu 3:Một hình trụ có diện tích xung quanh là và thể tích là Bán kính đáy của hình trụ này là = Câu 4:Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ I đi...
Đọc tiếp

Câu 1:Khi phương trình ?$x^2-3x+m=0$ có một nghiệm là ?$x=1,25$ thì nghiệm còn lại của phương trình là ?$x$=
Nhập kết quả dưới dạng số thập phân gọn nhất.
Câu 2:Nghiệm của phương trình ?$\sqrt{x+2}%20(\sqrt{x-1}-2)=0$?$x$ =
Câu 3:Một hình trụ có diện tích xung quanh là ?$80%20\pi%20cm^2$ và thể tích là ?$160%20\pi%20cm^2.$
Bán kính đáy của hình trụ này là ?$R$= ?$cm$
Câu 4:Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ I đi làm việc khác, tổ II làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ I mất giờ sẽ xong việc.
Câu 5:Biểu thức ?$S=\sqrt{x-10}+\sqrt{14-x}$ đạt giá trị lớn nhất khi ?$x$=
Câu 6:Tổng hai nghiệm không nguyên của phương trình ?$x^4+5x^3-12x^2+5x+1=0$
Câu 7:Biết phương trình ?$x^4+ax^3+bx^2+cx+d=0$ có các nghiệm là ?$-3;%20-1;%202;%204$
Ta được ?$a+b+c+d$=
Câu 8:Cho tam giác ABC cân tại A có BC = 24cm , AC = 20cm.
Độ dài bán kính đuờng tròn tâm O nội tiếp tam giác ABC là cm.
Câu 9:Cho hàm số ?$y=%20(3%20-2\sqrt{2})x%20+\sqrt{2}-1$.Giá trị của ?$y$ khi ?$x=3+2\sqrt{2}$
( Nhập kết quả làm tròn đến chữ số thập phân thứ 2)
Câu 10:Cho hàm số ?$y=(m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6})x+17.$ Số giá trị của ?$m$ để đồ thị hàm số đi qua điểm ?$A(1;%2017)$
5
18 tháng 2 2017

Làm một câu cuối

câu 10:

\(x=1;y=17\Rightarrow17=m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6}+17\)

\(\Leftrightarrow m^2-\left(\sqrt{3}+\sqrt{2}\right)m+\sqrt{6}\) (1)

Ta có: \(\Delta=\left(\sqrt{3}+\sqrt{2}\right)^2-4\sqrt{6}=5+2\sqrt{6}-4\sqrt{6}=5-2\sqrt{6}\)

\(5-2\sqrt{6}=3-2\sqrt{3}.\sqrt{2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2>0\)

=> (1) có hai nghiệm => đáp số =2

18 tháng 2 2017

câu 1:

x=1,25 -> (1,25)2 - 3.1,25+m=0 -> m= \(\frac{35}{16}\)

ta có pt mới : x2 -3x+\(\frac{35}{16}\)=0 -> (x-\(\frac{3}{2}\))2 =\(\frac{1}{16}\) -> x=1,75