\(B=3+\) \(3^2\)\(3^3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

Mình nghĩ bài 1 là rút gọn biểu thức nên sẽ giải như này:
Bài 1
\(B=3+3^2+3^3+...+3^{2015}\)(1)
Nhân 2 vế của (1) với 3
3B= \(3^2+3^3+3^4...+3^{2016}\)(2)
Trừ 2 vế của (2) cho (1)
3B-B= \(\left(3^2+3^3+3^4...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
2B   =\(3^2+3^3+3^4...+3^{2016}-3-3^2-3^3-...-3^{2015}\)
2B   =\(\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2015}-3^{2015}\right)+\left(3^{2016}-3\right)\)
2B   =\(3^{2016}-3\)
  B   = \(\frac{\left(3^{2016}-3\right)}{2}\)
Bài 2 làm tương tự như số mũ sẽ giảm đi
nhưng phần tìm n thì mình ko biết
Bài 3
nhân 2 vế với \(\frac{1}{2}\)ta có 1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100=1/1.2-1/99.100
                             =>1/1.2-1/99.100=1/k.(1/1.2-1/99.100)
                             =>1/k=1=>k=1
Bài 4:
rút gọn lại dc 5/28+5/70+5/130+...+5/700
tách 28 thành 4.7; 70 thành 7.10; 130 thành 10.13 ...
nhân cả biểu thức với 5/3 
5/3A= 1/4-1/7+1/7-1/10+1/10-1/13+...+1/25-1/28
5/3A= 1/4-1/28
5/3A= 3/14
     A=9/70

Bài 5: Vì 1/2<2/3;3/4<4/5;5/6<6/7...99/100<100/101
=>M<N

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)

\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)

\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)

\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)

b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)

c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)

\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)

\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)

\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)

e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)

\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)

g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)

\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)

14 tháng 7 2020

thank you,very well

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

Bài 1:

a) Ta có: \(\frac{5}{6}-\frac{2}{3}+\frac{1}{4}\)

\(=\frac{10}{12}-\frac{8}{12}+\frac{3}{12}\)

\(=\frac{2+3}{12}=\frac{5}{12}\)

b) Ta có: \(1\frac{11}{12}-\frac{5}{12}\cdot\left(\frac{4}{5}-\frac{1}{10}\right):\frac{-5}{12}\)

\(=\frac{23}{12}-\frac{5}{12}\cdot\left(\frac{8}{10}-\frac{1}{10}\right)\cdot\frac{-12}{5}\)

\(=\frac{23}{12}-\frac{5}{12}\cdot\frac{7}{10}\cdot\frac{-12}{5}\)

\(=\frac{23}{12}-\frac{-7}{10}\)

\(=\frac{115}{60}+\frac{42}{60}=\frac{157}{60}\)

Bài 2:

a) Ta có: \(\frac{1}{2}\cdot x-\frac{2}{5}=\frac{1}{5}\)

\(\Leftrightarrow\frac{1}{2}\cdot x=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}\)

\(\Leftrightarrow x=\frac{3}{5}:\frac{1}{2}=\frac{3}{5}\cdot2=\frac{6}{5}\)

Vậy: \(x=\frac{6}{5}\)

b) Ta có: \(\left(1-2x\right)\cdot\frac{4}{3}=\left(-2\right)^3\)

\(\Leftrightarrow\left(1-2x\right)\cdot\frac{4}{3}=-8\)

\(\Leftrightarrow1-2x=-8:\frac{4}{3}=-8\cdot\frac{3}{4}=-6\)

\(\Leftrightarrow-2x=-6-1=-7\)

hay \(x=\frac{7}{2}\)

Vậy: \(x=\frac{7}{2}\)

14 tháng 8 2020

lớp 9 đấy!

26 tháng 4 2017

kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi

26 tháng 4 2017

trời ơi bài dễ thế này tự làm đi còn hỏi

13 tháng 7 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{97.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\cdot\frac{99}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow x=\frac{0,33\times100}{0,33}=100\)