Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi a là STN nhỏ nhất cần tìm ( a€N*)
Theo đề: a chia 120 dư 58 => a-58 chia hết 120 => a -58 +240 chia hết 120 => a + 182 chia hết 120
a chia 135 dư 88 => a -88 chia hết 135 => a-88+270 chia hết 135 => a +182 chia hết 135
=> a + 182 €BC( 120, 135)
Mà a nhỏ nhất => a+182 = BCNN( 120, 135) => a+182 = 1080 => a = 898
Vậy STN nhỏ nhất cần tìm là 898
b) gọi a, b là 2 số cần tìm ( a, b €N* và a<b)
Theo đề: a+b=432 ; ƯCLN(a,b)=36
Ta có: ƯCLN(a,b)=36 => a= 36m, b = 36n ; (m,n)=1 và m<n
Vì a+b =432 => 36m+36n= 432
=> 36×(m+n)= 432
=> m+n = 12 và m<n
=> m | 1 |5
n |11 |7
a | 36 |180
b |396 |252
Vậy (a,b) = (36;396) ; (180; 252)
Gọi 2 số cần tìm là a ; b (coi a < b)
=> a + b = 84 và ƯCLN (a; b) = 6
ƯCLN(a; b) = 6 . Đặt a = 6m; b = 6n (m; n nguyên tố cùng nhau và m < n)
=> a + b = 6m + 6n = 84 => m + n = 84 : 6 = 14
Mà m; n nguyên tố cùng nhau , m < n => m = 1; n = 13 hoặc m = 3; n = 11 hoặc m = 5; n = 9
+) m = 1 ; n = 13 => a = 6 ; b = 78
+) ....tương tự
Vậy...
Không giảm tính tổng quát. Giả sử a < b
Do (a; b) = 6 nên a = 6m ; b = 6n (m < n)
=> a . b = 6m . 6n = 36mn = 864
=> mn = 24
Vì m < n nên (m;n) \(\in\) {(1; 24) ; (2; 12) ; (3; 8) ; (4; 6)}
<=> (a; b) \(\in\) {(6; 144) ; (12; 72) ; (18; 48) ; (24; 36)}
Gọi 2 số đó là a; b (giả sử a < b)
Ta có a.b = 864; (a; b) = 6
Đặt a = 6m; b = 6n (m< n và m; n nguyên tố cùng nhau)
a.b = 6m.6n = 864 => m.n = 24 = 1.24 = 2.12 = 3.8 = 4.6
=> m = 1; n = 24 hoặc m = 3; n = 8
+) m = 1; n = 24 => a = 6; b = 144
+) m = 3; n = 8 => a = 18; n = 48
Vậy....