K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)

\(=\frac{9}{15}+\frac{4}{15}\)

\(=\frac{13}{15}\)

b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)

\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)

c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)

\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)

d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)

\(=\frac{-7}{8}:\frac{-7}{4}\)

\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)

e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)

\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)

\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)

f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)

\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)

\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)

\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)

g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)

\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)

\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)

\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)

\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)

h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)

\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)

\(=\frac{5}{9}\)

1 tháng 6 2020

sao bn phũ với mk thế:(( đx ko giải lại còn nói thếbucminh

3 tháng 6 2020

Nó dễ mà :(

27 tháng 3 2019

\(a.\frac{108}{119}.\frac{107}{211}+\frac{108}{119}.\frac{104}{211}=\frac{108}{119}.\left(\frac{107}{211}+\frac{104}{211}\right)=\frac{108}{119}.1=108\)

25 tháng 4 2017

\(-\frac{3}{5}.\frac{5}{7}+-\frac{3}{5}.\frac{3}{7}+-\frac{3}{5}.\frac{6}{7}=-\frac{3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)=-\frac{3}{5}.2=-\frac{6}{5}\)

\(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\frac{4}{3}=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)-\frac{4}{3}=\frac{1}{3}.2-\frac{4}{3}=\frac{2}{3}-\frac{4}{3}=-\frac{2}{3}\)

\(\frac{4}{19}.\frac{-3}{7}+-\frac{3}{7}.\frac{15}{19}+\frac{5}{7}=-\frac{3}{7}\left(\frac{4}{19}+\frac{15}{19}\right)+\frac{5}{7}=-\frac{3}{7}+\frac{5}{7}=\frac{2}{7}\)

\(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\)

25 tháng 4 2017

\(a,6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)=6\frac{4}{5}-1\frac{2}{3}-3\frac{4}{5}=6\frac{4}{5}-3\frac{4}{5}-1\frac{2}{3}=3-1\frac{2}{3}=\frac{4}{3}\)

\(b,6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)=6\frac{5}{7}-2\frac{5}{7}-1\frac{3}{4}=\frac{9}{4}\)

\(c,7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)=7\frac{5}{9}-3\frac{5}{9}-2\frac{3}{4}=4-2\frac{3}{4}=\frac{5}{4}\)

mk nghĩ là phần d như thế này cơ \(7\frac{5}{11}\left(2\frac{3}{7}+3\frac{5}{11}\right)\)

\(7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)=7\frac{5}{11}-3\frac{5}{11}-2\frac{3}{7}=4-2\frac{3}{7}=\frac{11}{7}\)

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1

3 tháng 5 2019

Giúp Mik ik mai nộp oy

31 tháng 8 2017

\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{1454}{323}+\frac{35}{43}+6\)

\(=5,...+6\)

\(=11,...\)

3 tháng 7 2018

\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)

\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)

\(=\sqrt{3}-2\) 

\(VayA=\sqrt{3}-2\)