Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
bn **** rồi mik làm mik ko nuốt lời đâu
a) Xét tam giác ABM và tam giác ACM
AB=AC(tam giác ABC cân)
góc B=góc C( tam giác ABC cân)
BM=CM(M là trung điểm của BC)
=>tam giác ABM=tam giác ACM(c.g.c)
bn **** mik làm nốt câu b và c
Thực hiện phép tính A =
\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+.....+2016}\right)\)
\(\)
Câu c nhaaaaaaaa
Có: AF là phân giác DAE
=> \(DAF=EAF=\frac{DAE}{2}\)
Mà: DAE = 60 độ
=> \(EAF=30\)
=> Mà: AFE = 90 độ
=> \(AEF=180-90-30=60\)
=> \(AEB=120\) (Do: AEB và AEF là 2 góc kề bù)
Vậy góc BEA = 120 độ.
\(F\left(x\right)=ax^2+b\)
với \(F\left(0\right)=a0^2+b=-3\Leftrightarrow b=-3\left(2\right)\)
với\(F\left(1\right)=a1^2+b=-1\Leftrightarrow a+b=-1\left(1\right)\)
từ (1) và (2) ta có phương trình sau
\(\hept{\begin{cases}b=-3\\a+b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a+\left(-3\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a=2\end{cases}}\)
vậy b = -3 và a = 2
A B C H K P M
a) xét △ABM và △ ACM có
AB=AC ( △ABC cân tại A)
\(\widehat{B}=\widehat{C}\)( △ABC cân tại A)
BM=MC (gt)
=> △ABM = △ ACM (c.g.c)(đpcm)
b) xét △HBM và △ HCM có
\(\widehat{H}=\widehat{K}\left(=90^0\right)\)
BM=MC
\(\widehat{B}=\widehat{C}\) ( △ABC cân tại A)
=> △HBM = △ HCM (ch-gn)
=> HB=HC (2 cạnh tương ứng ) (đpcm)
c) +vì △HBM = △ HCM ( theo b)
=> \(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng )
VÌ + BP ⊥ AC (gt)
+ MK ⊥ AC (gt)
=> BP // MK (qh từ vuông góc đến // )
=> \(\widehat{BIM}=\widehat{KIM}\) (slt)
ta có
\(\widehat{BIM}+\widehat{HMB}+\widehat{IBM}=180^0\)(đl tổng 3 góc trong △)
\(\widehat{HMB}+\widehat{IMK}+\widehat{KMC}=180^0\)(kề bù )
MÀ \(\widehat{HMB}\) chung
\(\widehat{BIM}=\widehat{IMK}\left(cmt\right)\)
=> \(\widehat{IBM}=\widehat{KMC}\)
MÀ \(\widehat{KMC}=\widehat{IMB}\) (cmt)
=> \(\widehat{IBM}=\widehat{IMB}\)
=> △ IBM cân tại I (đpcm)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a)Ta có \(\Delta ABC\) cân tại A mà AM là đường trung tuyến
nên AM là đường trung trực hay \(AM\perp BC\)
b)Xét \(\Delta ABM\) và \(\Delta ACM\),có:
AB = AC (\(\Delta ABC\) cân tại A)
AM là cạnh chung
BM = CM ( M là trung điểm BC)
Do đó \(\Delta ABM\) = \(\Delta ACM\) (c-c-c)
c)Xét \(\Delta HBM\) và \(\Delta KCM\),Có:
\(\widehat{H}=\widehat{K}\) (\(=90^0\))
BM = MC (M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\)cân tại A)
Do đó: \(\Delta HBM\) = \(\Delta KCM\) (ch-gn)
\(\Rightarrow HB=CK\) ( 2 cạnh tương ứng )
d)Ta có:\(\Delta HBM\)=\(\Delta KCM\) (cmt) nên \(\widehat{HMB}=\widehat{KMC}\)(2 cạnh tương ứng)
Ta có: \(BP\perp AC\) \(MK\perp AC\) nên BP song song MK
Suy ra \(\widehat{IBM}=\widehat{KMC}\)(2 góc đồng vị)
mà \(\widehat{IMB}=\widehat{KMC}\) nên \(\widehat{IBM}=\widehat{IMB}\) Suy ra \(\Delta IBM\) cân tại I
bài 2 MH ở đâu ra đấy
Tự vẽ! nối M vs H