K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

a) (x-2)3-(x-3).(x2+3x+9)+(x+1)3

=x3-6x2+12x-8-x3+27+x3+3x2+3x+1

=x3+3x2+15x+20

b)chỗ này là đề toán đó nha các bạn các bạn tự chép giùm mình

=m3+3m2n+3mn2+n3-(m3-3m2n+3mn2-n3)-2m3

=m3+3m2n+3mn2+n3-m3+3m2n-3mn2+n3-2m3

=-2m3+m2n+2n3

CÁC BẠN NÀO CÓ XEM THÌ NHỚ TICK GIÙM MÌNH NHA BÀI NÀY MÌNH TỰ LÀM KO CÓ CHÉP MẠNG ĐÂU BẠN NÀO CÓ CHỖ KO HIỂU THÌ BÌNH LUẬN MÌNH SẼ TRẢ LỜI

14 tháng 9 2018

- Thực ra mình chỉ chép vào thôi chứ vẫn chưa hiểu gì cả, cậu có thể giải thích cho tớ hiểu được không ?

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

a) Ta có: \(a\left(m-n\right)+m-n\)

\(=a\left(m-n\right)+\left(m-n\right)\)

\(=\left(m-n\right)\left(a+1\right)\)

b) Ta có: \(mx+my+5x+5y\)

\(=m\left(x+y\right)+5\left(x+y\right)\)

\(=\left(x+y\right)\left(m+5\right)\)

c) Ta có: \(ma+mb-a-b\)

\(=m\left(a+b\right)-\left(a+b\right)\)

\(=\left(a+b\right)\left(m-1\right)\)

d) Ta có: \(1-xa-x+a\)

\(=\left(a+1\right)-x\left(a+1\right)\)

\(=\left(a+1\right)\left(1-x\right)\)

e) Ta có: \(\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-b+a+b\right)\)

\(=2a\left(a-b\right)\)

f) Ta có: \(a\left(a-b\right)\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab-a^2+ab-b^2\right)\)

\(=b^2\cdot\left(a+b\right)\)

g) Ta có: \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)

\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]\)

\(=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)

\(=\left(x+7\right)\left(-8x^2+21x+9\right)\)

\(=\left(x+7\right)\left(-8x^2+24x-3x+9\right)\)

\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]\)

\(=\left(x+7\right)\left(x-3\right)\left(-8x-3\right)\)

h) Ta có: \(\left(x+5\right)^2-3\left(x+5\right)\)

\(=\left(x+5\right)\left(x+5-3\right)\)

\(=\left(x+5\right)\left(x+2\right)\)

i) Ta có: \(2x\left(x-3\right)-3\left(x-3\right)^2\)

\(=\left(x-3\right)\left[2x-3\left(x-3\right)\right]\)

\(=\left(x-3\right)\left(2x-3x+9\right)\)

\(=\left(x-3\right)\left(9-x\right)\)

j) Ta có: \(x\left(x-7\right)+\left(7-x\right)^2\)

\(=x\left(x-7\right)+\left(x-7\right)^2\)

\(=\left(x-7\right)\left(x+x-7\right)\)

\(=\left(x-7\right)\left(2x-7\right)\)

k) Ta có: \(3x\left(x-9\right)^2-\left(9-x\right)^3\)

\(=3x\left(x-9\right)^2+\left(x-9\right)^3\)

\(=\left(x-9\right)^2\cdot\left(3x+x-9\right)\)

\(=\left(x-9\right)^2\cdot\left(4x-9\right)\)

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

26 tháng 7 2016

a) Mình không hiểu đề cho lắm bucminh

b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)  

   \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\) 

   \(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)  

   \(=x^3-2x^2+5x\)  

c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

   \(=2\left(2x+5\right)^2+3\left(4x+1\right)\left(4x-1\right)\)

    \(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)

    \(=8x^2+40x+50+48x^2-3\)

    \(=56x^2+40x+47\)

d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

   \(=x\left(x^2-16\right)-\left(x^4-1\right)\)

   \(=x^3-16x-x^4+1\)

e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)

    \(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)

    \(=y^4-81-y^4+4\)

    \(=-77\)

26 tháng 7 2016

Hỏi đáp Toán

17 tháng 7 2019

Đề bài thế này chỉ có nước khai triển thôi ạ!

a) Khai triển ra, pt \(\Leftrightarrow-\left(5x^2-2x+1\right)=-\left(5x^2+x+22\right)\)

\(\Leftrightarrow-2x+1=x+22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)

b) Khai triển ra, pt \(\Leftrightarrow x^3+3x^2+12x-9=x^3+3x^2+3x+1\)

\(\Leftrightarrow12x-9=3x+1\Leftrightarrow9x=10\Leftrightarrow x=\frac{10}{9}\) c) Cái này thì không cần khai triển đâu:v \(PT\Leftrightarrow\left(2x-1\right)^2-\left(2x+6\right)^2=5x-7\) Áp dụng hằng đẳng thức số 3 (nếu em nhớ không lầm) vào vế trái \(\Leftrightarrow-7\left(4x+5\right)=5x-7\Leftrightarrow x=-\frac{28}{33}\)
29 tháng 4 2018

Bài 1:

a) (x-3)\(^2\)-(x+1)(x-4)=0

<=>x\(^2\)-6x+9-x\(^2\)+4x-x+4=0

<=>-3x+13=0

<=>3x=13

<=> x=\(\dfrac{13}{3}\)

b)x\(^2\)-25=3x+15

<=>(x+5)(x-5)=3(x+5)

<=>(x+5)(x-5)-3(x+5)=0

<=>(x+5)[(x-5)-3]=0

<=>(x+5)(x-8)=0

<=> x+5=0 hoặc x-8=0

*x+5=0 *x-8=0

<=>x=-5 <=>x=8

c)x\(^2\)-10x+25=2(x-5)

<=>(x-5)\(^2\)=2(x-5)

<=>(x-5)\(^2\)-2(x-5)=0

<=>(x-5)[(x-5)-2]=0

<=>(x-5)(x-7)=0

<=>x-5=0 hoặc x-7=0

* x-5=0 *x-7=0

<=>x=5 <=>x=7

d)4x\(^2\)-12x+9=(1-x)\(^2\)

<=>4x\(^2\)-12x+9=1-2x+x\(^2\)

<=>4x\(^2\)-12x+9-1+2x-x\(^2\)=0

<=>3x\(^2\)-10x+9=0

Câu d đến đây mik chịu...limdim

29 tháng 4 2018

d)

\(4x^2-12x+9=\left(1-x\right)^2\)

\(\Leftrightarrow4x^2-12x+9-1+2x-x^2=0\)

\(\Leftrightarrow3x^2-10x+8=0\)

\(\Leftrightarrow3x^2-6x-4x+8=0\)

\(\Leftrightarrow3x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)

2 tháng 10 2016

a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)

\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)

b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)

\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)

c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)

d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)

2 tháng 9 2019

bài 2, e.\(x^3-3x^2+3x-1\)

=\(x^3-x^2-2x^2+2x+x-1\)

=\(\left(x^3-x^2\right)\)-\(\left(2x^2-2x\right)\)+(x-1)

=\(x^2\left(x-1\right)\)-2x(x-1)+(x-1)

=(x-1)(x\(^2\)-2x+1)

=(x-1)\(^3\)

h. \(x^3+1-x^2-x\)

=(x\(^3\)-x\(^2\))-(x-1)

=x\(^2\)(x-1)-(x-1)

=(x-1)(x\(^2\)-1)

g. \(x^3+6x^2+12x+8\)

=\(x^3+2x^2+4x^2+8x+4x+8\)

=\(\left(x^3+2x^2\right)+\left(4x^2+8x\right)+\left(4x+8\right)\)

=\(x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

=(x+2)(\(x^2+4x+4\))

=(x+2)\(^3\)

k.\(\left(x+y\right)^3\) -x\(^3\)-y\(^3\)

= \(\left(x^3+3x^2y+3xy^2+y^3\right)-x^3-y^3\)

=\(x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

=\(3x^2y+3xy^2\)

=3xy(x+y)

bài 3, a. \(4x^2-49=0\)

\(4x^2=49\)

x\(^2\)=\(\frac{49}{4}\)

x=√\(\frac{49}{4}\)

x=\(\frac{7}{2}\)

vậy x=\(\frac{7}{2}\)

4 tháng 8 2016

a)x^2.16-4xy+4y^2

<=>16.x^2-2x2y+(2y)^2

<=>16(x-2y)^2

b)x^5-x^4+x^3-x^2

<=>(x^5-x^4)+(x^3-x^2)

<=>x^4(x-1)+x^2(x-1)

<=>(x-1)(x^4+x^2)

c)x^5+x^3-x^2-1

<=>(x^5+x^3)-(x^2+1)

<=>x^3(x^2+1)-(x^2+1)

<=>(x^2+1)(x^3-1)

d)x^4-3x^3-x+3

<=>(x^4-3x^3)-(x-3)

<=>x^3(x-3)-(x_3)

<=>(x-3)(x^3-1)

4 tháng 8 2016

\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)