Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.
\(B=\frac{1}{2020}\)
B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)
= \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)
= \(\frac{1}{2020}\)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....
\(a.2x+7x+x=-270\)
\(10x=-270\)
\(x=-27\)
\(b,\left(x-1\right)\left(x-9\right)=0\)
\(=>x-1=0\) \(=>x=1\)
\(x-9=0=>x=9\)
Vậy \(x\in\left\{1;9\right\}\)
cho mình hỏi ạ...bài a, sao bạn là ra là 10x ạ?
Bạn không thích trả lời cũng được ạ...!
\(\text{1) -5x - (-3)= 13}\)
\(\Rightarrow-5x=10\)
\(x=10:-5\)
\(x=-2\)
\(\text{2) |x-3| - 7= 13}\)
\(\Rightarrow|x-3|=20\)
\(\Rightarrow\orbr{\begin{cases}x-3=20\\x-3=-20\end{cases}\Leftrightarrow\orbr{\begin{cases}x=23\\x=-17\end{cases}}}\)
\(\text{3) 17- (43 - |x|)= 45}\)
\(\Rightarrow43-|x|=-28\)
\(|x|=71\)
\(\Rightarrow\orbr{\begin{cases}x=71\\x=-71\end{cases}}\)
\(\text{5) (x-2).(x+15)= 0}\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-15\end{cases}}}\)
4,\(\text{4) (x-3).(x-5) < 0}\)\(\left(x-3\right).\left(x-5\right)< 0\)
\(\Rightarrow\left(x-3\right)\)và \(\left(x-5\right)\)trái dấu
Mà \(\left(x-3\right)>\left(x-5\right)\Rightarrow\left(x-3\right)>0\)và \(\left(x-5\right)< 0\)
\(+,x-3>0\Rightarrow x>3\)
\(+,x-5< 0\Rightarrow x< 5\)
\(\Rightarrow3< x< 5\)
\(\)Mà \(x\in Z\)
\(\Rightarrow x=4\)
học tốt
1<=>-5x+3=13
<=>-5x=10
<=>x=-2
2<=>|x-3|=20
th1:x-3=20
<=>x=23
th2:x-3=-20
<=>x=-17
3,<=>17-43+|x|=45
<=>|x|=71
th1:x=71
th2:x=-71
4<=>x-3<0 x-5>0
<=>x<3 x>5(loại vì ko có số naod vừa lớn hơn 5 và nhỏ hơn 3)
<=>x-3>0 x-5<0
<=>x>3 x<5
=>3<x<5
5,<=>x-2=0 x+15=0
<=>x=2 x=-15
https://www.youtube.com/channel/UCb2H-q6FmW61PgcsL1OGPfw ủng hộ bạn t:))
Câu b trc nhé
M = | x - 4 | + 2021
Ta có \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow\left|x-4\right|+2021\ge2021\forall x\)
\(\Rightarrow M\ge2021\forall x\)
Dấu "= " xảy ra \(\Leftrightarrow\left|x-4\right|=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy Min M = 2021 \(\Leftrightarrow x=4\)
Tại s lại là tìm max ạ
(x - 1)(y + 3) = - 4
=> x - 1; y + 3 thuộc Ư(-4)
ta có bảng :