K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:
$\Delta'=4-6m$

a. Để pt có nghiệm thì $\Delta'=4-6m\geq 0\Leftrightarrow m\leq \frac{2}{3}$

b/ Để pt có 2 nghiệm phân biệt thì $\Delta'=4-6m>0\Leftrightarrow m< \frac{2}{3}$

c. Để pt có nghiệm kép thì $\Delta'=4-6m=0\Leftrightarrow m=\frac{2}{3}$

d. Để pt vô nghiệm thì $\Delta'=4-6m< 0\Leftrightarrow m> \frac{2}{3}$

a: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot2m=-24m+16\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow-24m+16\ge0\)

\(\Leftrightarrow-24m\ge-16\)

hay \(m\le\dfrac{2}{3}\)

b: Để phương trình có hai nghiệm phân biệt thì Δ>0

hay \(m< \dfrac{2}{3}\)

c: Để phương trình có nghiệm kép thì Δ=0

hay \(m=\dfrac{2}{3}\)

a: khi m=1 thì pt sẽ là:

x^2+3x+1=0

=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)

b: Δ=(2m+1)^2-4m^2

=4m+1

Để phương trình có nghiệm kép thì 4m+1=0

=>m=-1/4

Khi m=-1/4 thì pt sẽ là:

x^2+x*(-1/4*2+1)+(-1/4)^2=0

=>x^2+1/2x+1/16=0

=>(x+1/4)^2=0

=>x+1/4=0

=>x=-1/4

26 tháng 4 2020

A, ta có: \(\Delta’\)=m2-1

Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1

B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1

Nghiem kép đó là: 0

26 tháng 4 2020

\(x^2+2\left(m+1\right)x+2m+2=0\)

\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)

a, Để phương trình có hai nghiệm phân biệt thì:

\(\Delta'>0\)

\(\Leftrightarrow m^2>1\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow m< -1;m>1\)

b, Phương trinh có nghiệm kép khi:

\(\Delta'\ge0\)

\(\Leftrightarrow m^2-1\ge0\)

\(\Leftrightarrow m\le-1;m\ge1\)

Theo Viet ta có:

\(x_1+x_2=-2\left(m+1\right)\)

\(x_1x_2=2\left(m+1\right)\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow4m^2+4m-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

So với điều kiện phương trình có nghiệm m=1 ; m =-2 

c: Thay m=-2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

f: Thay x=-3 vào pt, ta được:

\(9-3m+m+3=0\)

=>-2m+12=0

hay m=6

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán