Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
\(=2\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{32}=4\sqrt{2}\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\)cm
* Áp dụng hệ thức :\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)cm
-> HC = BC - HB = 4\(\sqrt{2}\)- 2\(\sqrt{2}\) = 2 \(\sqrt{2}\)
sinB = \(\dfrac{AC}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
cosB = \(\dfrac{AB}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
tanB = \(\dfrac{AC}{AB}=\dfrac{4}{4}=1\)
cotaB = \(\dfrac{AB}{AC}=\dfrac{4}{4}=1\)
tương tự với tỉ số lượng giác ^C
b, bạn cần cm cái gì ? ;-;
b: Xét tứ giác AEHD có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật
Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(BD\cdot DA=DH^2\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(CE\cdot EA=EH^2\)
Xét ΔEHD vuông tại H, ta được:
\(ED^2=EH^2+HD^2\)
hay \(ED^2=DA\cdot DB+EA\cdot EC\)
Bài 2:
a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)
\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)
\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)
b: Đặt \(\cos\alpha=a;\sin\alpha=b\)
Theo đề, ta có: a-b=1/5
=>a=b+1/5
Ta có: \(a^2+b^2=1\)
\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)
\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)
\(\Leftrightarrow10b^2+2b-24=0\)
=>b=4/5
=>a=3/5
\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)
Bài 1:
a) tan83° - cotg7° = cotg7° - cotg7° = 0
b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°
= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°
= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)
= 1 + 1
= 2
Bài 1 c) để mình suy nghĩ