Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Ta có:
\(999^4+999=999\left(999^3+1^3\right)\)
Đây là 1 hằng đẳng thức nên :
\(=999\left(999+1\right)\left(999^2-999+1\right)\)
\(=999.1000.\left(999^2-999+1\right)⋮1000\)
=>ĐPCM.
b , \(\left(x^2+2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2\right)+\dfrac{3}{4}\)
\(=>\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> Ta có ĐPCM...

Thay x = -1, y = 1 vào biểu thức, ta được
a ( -1 ) ( -1 - 1 ) + 13( -1 + 1 )
= - a ( - 2 ) + 10 = 2a.
Vậy đánh dấu x vào ô trống tương ứng với 2a.

áp dụng BĐT cô si cho 4 số ta có
\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^4.a^4.a^4.b^4}\)
<=> \(a^4+a^4+a^4+b^4\ge4a^3b\)
tương tự
a4 +b4+b4 +b4 ≥4ab3
công vế với vế ta đc
4a4+4b4 ≥4a3b +4ab3
<=> a4+b4 ≥ a3b +b3a (chia cả 2 vế cho 4) (đpcm)

bn tính ra đc bt thức \(ax\left(x-y\right)+y^3\left(x+y\right)=ax^2-axy+xy^3+y^4\)
Thay x=-1 và y=1 b=vào biểu thức vừa tính đc, ta có:
\(a\times\left(-1\right)^2-a\times\left(-1\right)1+\left(-1\right)\times1^3+1^4=2a\)

1a,(1-x)(x+2)=0
=>1-x=0=>x=1
=>x+2=0=>x=-2
1b,(2x-2)(6+3x)(3x+2)=0
=>2x-2=0=>2(x-1)=0=>x=1
=>6+3x=0=>3x=-6=>x=-2
=>3x+2=0=>3x=-2=>x=-2/3
1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0
=>5x-5=0=>5(x-1)=0=>x=1
=>3x+2=0=>x=-2/3
=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2
=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)
Bài 1: 2017 - 2a < 2017 - 2b
<=> -2a < -2b
<=> 2a > 2b
<=> a > b
b) a > b
=> -2018a < -2018b
=> -2018a + 29 < -2018b + 29 ( đpcm)
Bài 2:
( x + 5) ( x - 5) > (x+2)2 + 4
=> x2 - 25 > x2 + 4x + 8
=> -4x > 33
=> x < -8,25
Bài 1: a) 2017 - 2a <2017 - 2b
⇒ -2a < -2b
⇒ a > b
b)-2018a + 29 < -2018b - 29
⇒ -2018a < - 2018b
⇒a > b (đpcm)
Bài 2:
(x+5) (x- 5) > (x+2)2 + 4
⇔ x2 - 5x + 5x - 25 > x2 + 4x + 4 + 4
⇔ x2 - 5x + 5x - x2 - 4x > 4+ 4+ 25
⇔ - 4x > 33
⇔x < -33/4