Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy nếu \(\sqrt{1-a^2}+\sqrt{1-b^2}=0\Rightarrow a^2=b^2=1\)
\(\Rightarrow a-b=0\Rightarrow a=b\) (vô lí).
Do đó ta có:
\(GT\Leftrightarrow a-b=\frac{a^2-b^2}{\sqrt{1-a^2}+\sqrt{1-b^2}}\)
\(\Leftrightarrow a+b=\sqrt{1-a^2}+\sqrt{1-b^2}\)
Mà \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
Nên \(2a=a+b+a-b=2\sqrt{1-b^2}\)
\(\Rightarrow a=\sqrt{1-b^2}\Rightarrow a^2+b^2=1\).
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)
\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)
b) Đặt x = 2009 . Ta cần chứng minh \(\sqrt{x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2}\) là số nguyên dương.
Ta xét : \(x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2=x^2\left(x+1\right)^2+x^2+x^2+2x+1=x^2\left(x+1\right)^2+2x\left(x+1\right)+1=\left[x\left(x+1\right)+1\right]^2\)
\(\Rightarrow\sqrt{x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2}=\left|x\left(x+1\right)+1\right|=x^2+x+1=2009^2+2009+1\) là một số nguyên dương.