Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)
\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)
\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)
c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)
\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)
d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)
\(=\frac{3-12x^2}{-2x^2-4x+16}\)
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)
\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
\(A=-2x^2+5x-8\)
\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)
\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)
\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)
\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)
\(B=-x^2-y^2+xy+2x+2y\)
\(2B=-2x^2-2y^2+2xy-4x-4y\)
\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)
\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)
\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)
\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)
\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
a)có khả năng sai đề bài
b)Liệu có sai đề bài không
c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)
\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)
d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)
a)\(\frac{4x+1}{3x}\)+\(\frac{2x-3}{6x}\)=\(\frac{2\left(4x+1\right)}{2.3x}\)+\(\frac{2x-3}{6x}\)=\(\frac{8x+2}{6x}\)+\(\frac{2x-3}{6x}\)=\(\frac{8x+2+2x-3}{6x}\)=\(\frac{10x-1}{6x}\)
b)\(\frac{x^2-y^2}{6x^2y^2}\):\(\frac{x+y}{3xy}\)=\(\frac{\left(x+y\right)\left(x-y\right)}{6x^2y^2}\) . \(\frac{3xy}{x+y}\)=\(\frac{\left(x+y\right)\left(x-y\right)3xy}{6x^2y^2\left(x+y\right)}\)=\(\frac{x-y}{2xy}\)