\(3^{x+2}+3^{x+1}+3^x\)chia hết cho 39

b)Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=3^x\left(3^2+3+1\right)=3^x\cdot13=3^{x-1}\cdot39⋮39\)

b: \(\Leftrightarrow5^x\cdot25+5^x\cdot5+5^x=105\)

\(\Leftrightarrow5^x\cdot31=105\)(vô lý)

Bài 2: 

a: \(3B=3+3^2+3^3+...+3^{90}\)

\(\Leftrightarrow2B=3^{90}-1\)

hay \(B=\dfrac{3^{90}-1}{2}\)

b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)

 

12 tháng 7 2015

1.a) => (2x+1)2=52

=> 2x+1=5

=>2x=5-1

=>2x=4

=>x=4:2

=>x=2

b.=>(x-1)3=(-5)3

=>x-1=-5

=>x=-5+1

=>x=-4

c.=> 2x.(22-1)=96

=> 2x.3=96

=> 2x=96:3

=> 2x=32

=>2x=25

=>x=5

13 tháng 7 2015

Bài 2: a)

\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\) chia hết cho \(7\) 

Vậy \(5^5-5^4+5^3\) luôn chia hết cho \(7\)

b) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho \(7\)

Vậy \(7^6+7^5-7^4\)chia hết cho \(7\)

13 tháng 7 2015

Bài 2:       

a/ Vì: \(5^5-5^4+5^3=3125-625+125=2625\) 

Lấy 2625 chia  cho 7 cho kết quả:  \(2625:7=375\)

Suy ra: \(5^5-5^4+5^3\) chia hết cho 7        

b/  Vì: \(7^6+7^5-7^4=117649+16807-2401=132055\)

Lấy 132055 chia cho 7 cho kết quả: \(132055:7=18865\)

Suy ra : \(7^6+7^5-7^4\) chia hết cho 7      

Câu a thì em biết đáp án nhưng không biết trả lời sao, nhờ các bạn trả lời câu a đó 

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

11 tháng 8 2019

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)

\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1}{2009}\)

11 tháng 8 2019

1,

\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)

\(|x- \frac{2}{7}|=\frac{1}{7}\)

<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)

Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)

Học tốt

5 tháng 2 2018

chưa rảnh

5 tháng 2 2018

vậy khi nào rảnh thì bạn giúp mk nha

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0