K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c

\(\Rightarrow am⋮c;bn⋮c\)

\(\Rightarrow am\pm bn⋮c\)(ĐPCM)

Vậy nếu a\(⋮\)c;b\(⋮\)c  \(\Rightarrow am\pm bn⋮c\)

b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m

\(\Rightarrow\left(a+b\right)+c⋮m\)

Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)

\(\Rightarrow c⋮m\)(ĐPCM)

Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m

*Lưu ý ĐPCM=Điều phải chứng minh

Chúc bn học tốt

2 tháng 4 2020

thanks bạn

4 tháng 3 2023

Theo bài ra ta có :

a = m.k ;          b = m.n;         a + b + c = m.d  (k; n; d \(\in\) Z)

⇒ c = m.d - (a+b) 

⇒a + b = m.k + m.n = m(k+n) 

Thay a + b = m(k+n) vào biểu thức c = m.d - (a+b) ta có:

c = m.d - m(k+n)

c = m.( d-k-n) Vì d,k,n \(\in\) Z nên => c ⋮ m (đpcm)

 

 

11 tháng 10 2021

ta có một phép tính ví dụ 2CH 2;4CH2 mà3 KC2 nên2c4c3KCm

11 tháng 10 2021

bạn cho mình sao nhé

20 tháng 5 2020

= B cận thận sai nhé

20 tháng 5 2020

ai chơi freefire thì kb với mình

8 tháng 5 2021

Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.

Áp dụng công thức

- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết

29 tháng 3 2020

Ta có : \(\hept{\begin{cases}a⋮c\\b⋮c\end{cases}}\Rightarrow\left(a+b\right)⋮c\)

Vì \(a⋮c\)và \(b⋮c\)nên \(am⋮c\)và \(bn⋮c\)với \(m,n\inℤ\)

\(\Rightarrow\left(am+bn\right)⋮c\)(đpcm)