Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do : \(\overline{abc}⋮37\)
\(\Leftrightarrow100a+10b+c⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
Lại có : \(999a⋮37\)
\(\Rightarrow1000a-999a+100b+10c⋮37\)
\(\Leftrightarrow100b+10c+a⋮37\)
\(\Leftrightarrow1000b+100c+10a⋮37\)
\(\Leftrightarrow1000b-999b+100c+10a⋮37\)
\(\Leftrightarrow100c+10a+b⋮37\)
hay : \(\overline{cab}⋮37\) (ddpcm)
b) Ta có : \(xy+12=x+y\)
\(\Leftrightarrow x+y-xy=12\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=11\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=11\)
Do đó : x-1 và y-1 là các cặp ước của 11
Rồi bạn lập bảng xét các ước của 11.
a.Xét tổng\(11.\overline{abc}+\overline{cab}\)ta có:
\(11.\overline{abc}+\overline{cab}=1110a+111b+111c=111\left(10a+b+c\right)=37.3\left(10a+b+c\right)⋮37\)
Mà \(11.\overline{abc}⋮37\Rightarrow\overline{cab}⋮37\)
1. Ta có 14 và 28 có cùng số dư khi chia7 là 0
mà 28 - 14 = 14 chia hết cho 7 (đpcm)
2. Ta có : \(\overline{aaa}=\overline{a}.111\)
=> \(\overline{aaa}=\overline{a}.3.37⋮37\)
=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)
1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;
=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)
2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)
Do có chứa 1 thừa số là 37;
3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
Bài 1: Tìm x.
a. 7x - 5 = 16
⇒ 7x = 16 + 5
⇒ 7x = 21
=> x = 21 : 7
=> x = 3
Vậy : x = 3
b. 156 - 2 = 82
c. 10x + 65 = 125
=> 10x = 125 - 65
=> 10x = 60
=> x = 60 : 10
=> x = 6
Vậy : x = 6
e. 15 + 5x = 40
=> 5x = 40 -15
=> 5x = 25
=> x = 25 : 5
=> x = 5
Vậy : x = 5
a, \(\overline{abc}⋮37\)
\(\Rightarrow100a+10b+c⋮37\)
\(\Rightarrow74a+\left(26a+10b+c\right)\)
Vì 74a \(⋮37\)nên \(74a+\left(26a+10b+c\right)\)\(⋮37\)
Do đó \(\overline{abc}⋮37\)(1)
Lại có: \(\overline{cab}\)\(=100c+10a+b=74c+\left(26c+10a+b\right)\)
Vì 74c \(⋮37\)nên \(74c+\left(26c+10a+b\right)\)\(⋮37\)
Do đó: \(\overline{cab}\)\(⋮37\)(2)
Từ (1) và (2) ta suy ra:
\(\overline{abc}⋮37\)thì \(\overline{cab}\)\(⋮37\)
b, \(xy+12=x+y\)
\(xy-x-y=12\)
\(x\left(y-1\right)-y=12\)
\(\left[x\left(y-1\right)-y\right]+1=12+1\)
\(x\left(y-1\right)-\left(y-1\right)=13\)
\(\left(x-1\right)\left(y-1\right)=13\)
Ta có: \(13=1.13=13.1=\left(-1\right).\left(-13\right)=\left(-13\right).\left(-1\right)\)
Ta có bảng:
\(x-1\) \(1\) \(13\) \(-1\) \(-13\)
\(y-1\) \(13\) \(1\) \(-13\) \(-1\)
\(x\) \(2\) \(14\) \(0\) \(-12\)
\(y\) \(14\) \(2\) \(-12\) \(0\)