Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Gọi phân số tối giản phải tìm là a/b; (a; b ∈ Z; b ≠ 1), ƯCLN (a, b) = 1
Ta có a.b = 3150 = 2. 32. 52. 7 và a, b đều là ước của 3150.
Vì phân số này có thể viết được dưới dạng số thập phân hữu hạn nên b chỉ có ước nguyên tố là 2 và 5.
Do đó, b ∈ {2; 25; 50}.
- Với b = 2 thì a = 3150:2 = 1575
- Với b = 25 thì a = 3150:25 = 126
- Với b = 50 thì a = 3150:50 = 63
Vậy các phân số phải tìm là:
Bài 1:
a) \(49< 7^n< 343\)
\(\Rightarrow7^2< 7^n< 7^3\)
\(\Rightarrow2< n< 3\)
\(\Rightarrow n\) không có giá trị nào
Vậy \(n\in\varnothing.\)
b) Sửa lại đề là \(9< 3^n\le243\)
\(\Rightarrow3^2< 3^n\le3^5\)
\(\Rightarrow2< n\le5\)
\(\Rightarrow\left\{{}\begin{matrix}n=3\\n=4\\n=5\end{matrix}\right.\)
Vậy \(n\in\left\{3;4;5\right\}.\)
c) \(121\ge11^n\ge1\)
\(\Rightarrow11^2\ge11^n\ge11^0\)
\(\Rightarrow2\ge n\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}n=2\\n=1\\n=0\end{matrix}\right.\)
Vậy \(n\in\left\{2;1;0\right\}.\)
Bài 2:
\(\frac{81}{625}=\frac{9^2}{25^2}=\left(\frac{9}{25}\right)^2.\)
\(\frac{81}{625}=\frac{3^4}{5^4}=\left(\frac{3}{5}\right)^4.\)
Chúc bạn học tốt!
Bài 4 :
\(A=3^2+6^2+...+30^2\)
\(=1.3^2+2^2.3^2+...+3^2.10^2\)
\(=3^2\left(1+2^2+...+10^2\right)\)
\(=9.385=3465\)
Vậy A = 3465