Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
bài 1:
\(5^x+5^{x+1}+5^{x+2}+5^{x+3}+3900=0\)
=> \(5^x+5^{x+1}+5^{x+2}+5^{x+3}=-3900\)
=> \(5^x(5^1+5^2+5^3)=-3900\)
=> \(5^x.155=-3900\)
=> \(5^x=-3900:155\)
=> \(5^x\approx-25\)
=> \(5^x=-\left(5^2\right)\)
=> x=2
bài 2:
A= \(2+2^2+2^3+.....+2^{2018}\)
=> 2A= \(\left(1+2+2^2+....+2^{2019}\right)\)
=> 2A-A= \(\left(1+2+2^2+....+2^{2018}\right)\) -( \(2+2^2+2^3+.....+2^{2019}\))
=> 2A-A= \(\left(1+2+2^2+....+2^{2018}\right)\)+ \(2-2^2-2^3-.....-2^{2019}\)
=> A= 1- \(2^{2019}\)
Thay A= 1- \(2^{2019}\) vào ta được
1-\(2^{2019}\) +2 =\(2^x\)
=> 1-(1+1).\(2^{2020}\) =\(2^x\)
=> -1. \(2^{2020}\) = \(2^x\)
=> -(\(2^{2020}\)) =\(2^x\)
=> x= 2010