K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Bài 1 :

Một mảnh đất hình chữ nhật có chu vi 40m. Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 2m thì diện tích tăng thêm 4m. Tính chiều dài và chiều rộng của mảnh vườn

chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
  <=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ =>  x=12, y =8

Bài 1

chiều dài x, rộng y
2(x+y)=40 => x+y=20 (1)
diện tích S=xy
=> (x-2)(y+2) - xy=4
  <=> 2x-2y= 8 (2)
từ (1) và (2) có hệ pt, giải hệ =>  x=12, y =8

11 tháng 5 2016

gọi x là chiều dài của HCN —» chiều rộng HCN = x - 7 

Theo Định lý pitago ta có : 

13² = (x - 7 )² + x² 

<=> 169 = x² - 14x + 49 + x² 

<=> 120 = 2x² - 14x 

<=> 2x² - 14x - 120 = 0 

bấm máy dc : x= -5 ( loại khoảng cách không âm ) va x = 12 (nhận) suy ra chiều rộng bằng 12 - 7 = 5m 

Vậy chiều dài bằng 12 và chiều rộng bằng 5 

7 giờ trước (16:07)

Bài 3:

a: Xét ΔAHB vuông tại H có \(\sin B=\frac{AH}{AB}\)

=>\(AH=AB\cdot\sin B=8\cdot\sin40\) ≃5,14

b: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(HB^2=AB^2-AH^2\)

=>\(HB=\sqrt{AB^2-AH^2}\) ≃6,13

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)

=>\(AC=\frac{AH}{\sin C}\) ≃10,28

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HC^2=10,28^2-5,14^2\)

=>HC≃8,9

BC=BH+CH

=8,9+6,13=15,03

Bài 2:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=81+144=225=15^2\)

=>BC=15(cm)

ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\frac{9\cdot12}{15}=7,2\) (cm)

b: Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{9}{15}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}\)\(90^0-37^0=53^0\)

c: Xét ΔABC có AE là phân giác

nên \(\frac{EB}{AB}=\frac{EC}{AC}\)

=>\(\frac{EB}{9}=\frac{EC}{12}\)

=>\(\frac{EB}{3}=\frac{EC}{4}\)

mà EB+EC=BC=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{EB}{3}=\frac{EC}{4}=\frac{EB+EC}{3+4}=\frac{15}{7}\)

=>\(EB=\frac{15}{7}\cdot3=\frac{45}{7}\left(\operatorname{cm}\right);EC=\frac{15}{7}\cdot4=\frac{60}{7}\left(\operatorname{cm}\right)\)

Bài 1:

Nửa chu vi mảnh đất là 86:2=43(m)

Gọi chiều rộng mảnh đất là x(m)

(ĐIều kiện: x>0)

Chiều dài mảnh đất là 43-x(m)

Chiều dài sau khi tăng thêm 2 m là: 43-x+2=45-x(m)

Chiều rộng sau khi giảm 3m là x-3(m)

Diện tích mảnh đất giảm đi \(60m^2\) nên ta có:

x(43-x)-(45-x)(x-3)=60

=>\(43x-x^2-\left(45x-135-x^2+3x\right)=60\)

=>\(43x-x^2-\left(-x^2+48x-135\right)=60\)

=>\(43x-x^2+x^2-48x+135=60\)

=>-5x=60-135=-75

=>x=15(nhận)

Vậy: Chiều rộng là 15m

Chiều dài là 43-15=28(m)

6 tháng 8 2018

Gọi số đo độ dài hai cạnh góc vuông của tam giác vuông đó là x(cm), y (cm)

( 0 < y < x < 10)

Hai cạnh góc vuông có độ dài hơn kém nhau 2cm nên ta được x – y = 2 , (1).

Theo định lý Pytago ta có:  x 2   +   y 2   =   10 2   =   100   ( 2 )

Từ (1) và (2) ta có hệ phương trình:

Giải bài 18 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) suy ra: x= y+ 2 thay vào (2) ta được:

( y + 2 ) 2 + y 2 = 100 ⇔ y 2 + 4 y + 4 + y 2 = 100 ⇔ 2 y 2 + 4 y − 96 = 0  hay  y 2 + 2 y − 48 = 0

Giải ra ta được: y 1   =   6 ;   y 2   =   - 8   <   0 ( loại)

Với y= 6 suy ra x = 8.

Vậy độ dài các cạnh góc vuông của tam giác vuông là 6cm và 8cm.

19 tháng 8 2017

Gọi số đo độ dài hai cạnh góc vuông của tam giác vuông đó là x(cm), y (cm)

( 0 < y < x < 10)

Hai cạnh góc vuông có độ dài hơn kém nhau 2cm nên ta được x – y = 2 , (1).

Theo định lý Pytago ta có:  x 2 +   y 2   =   10 2   =   100   ( 2 )

Từ (1) và (2) ta có hệ phương trình:

Giải bài 18 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) suy ra: x= y+ 2 thay vào (2) ta được:

( y + 2 ) 2 + y 2 = 100 ⇔ y 2 + 4 y + 4 + y 2 = 100

⇔   2 y 2   +   4 y   –   96   =   0   h a y   y 2   +   2 y   –   48   =   0

Giải ra ta được:  y 1   =   6 ;   y 2   =   - 8   <   0   (   l o ạ i )

Với y= 6 suy ra x = 8.

Vậy độ dài các cạnh góc vuông của tam giác vuông là 6cm và 8cm.

29 tháng 11 2021

Diện tích hình vuông cạnh c là \(S=c^2\)

Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)

Xét tg vuông có \(c^2=a^2+b^2\)

Áp dụng cosi có

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)

\(\Rightarrow S\ge S_1\left(dpcm\right)\) 

\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân