\(\hept{\begin{cases}x^2+xy+y^2=3\\x-y-xy=5\end{cases}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

19 tháng 12 2017

OMABICDEF

a) Ta thấy OAM và OBM là các tam giác vuông có chung cạnh huyền OM nên A, O, B, M cùng thuộc đường tròn đường kính OM.

b) Theo tính chất hai tiếp tuyến cắt nhau thì MA = MB và MI là tia phân giác góc AMB.

Vậy thì tam giác MAB cân tại M, có phân giác MI đồng thời là đường cao.

Vậy nên \(OM\perp AB\) tại I.

c) Do D thuộc đường tròn (O) nên OC = OB = OD.

Suy ra tam giác BDC vuông tại D.

Xét tam giác vuông CBM, đường cao BD, ta có: \(MD.MC=BM^2\)  (Hệ thức lượng)

Xét tam giác vuông OBM, đường cao BI, ta có: \(MI.MO=BM^2\)  (Hệ thức lượng)

Vậy nên MD.MC = MI.MO

d) Ta thấy CEF và CAF là các tam giác vuông có chung cạnh huyền CF nên FAEC nội tiếp đường tròn đường kính CF.

\(\Rightarrow\widehat{FCE}=\widehat{EAB}\) (Hai góc nội tiếp cùng chắn cung CO)

Lại có O,E, A, M, B cùng thuộc đường tròn đường kính OM nên \(\widehat{EAB}=\widehat{EMB}\) (Hai góc nội tiếp cùng chắn cung EB)

\(\Rightarrow\widehat{FCE}=\widehat{EMB}\)

Ta có \(\widehat{EMB}+\widehat{ECB}=90^o\Rightarrow\widehat{FCE}+\widehat{ECB}=90^o\)

\(\Rightarrow\widehat{FCB}=90^o\)

Vậy FC là tiếp tuyến của đường tròn (O).

Bài 1:Giải hệ phương trìnha)\(\hept{\begin{cases}10x-9y=1\\15x+21y=36\end{cases}}\)                                                b)\(\hept{\begin{cases}4x+y=2\\8x+3y=5\end{cases}}\)               c) \(\hept{\begin{cases}x-y=m\\2x+y=4\end{cases}}\)      d) \(\hept{\begin{cases}3x+2y=6\\x-y=2\end{cases}}\)                                                        e)\(\hept{\begin{cases}2x-3y=1\\-4x+6y=2\end{cases}}\)     ...
Đọc tiếp

Bài 1:Giải hệ phương trình

a)\(\hept{\begin{cases}10x-9y=1\\15x+21y=36\end{cases}}\)                                                b)\(\hept{\begin{cases}4x+y=2\\8x+3y=5\end{cases}}\)               c) \(\hept{\begin{cases}x-y=m\\2x+y=4\end{cases}}\)      

d) \(\hept{\begin{cases}3x+2y=6\\x-y=2\end{cases}}\)                                                        e)\(\hept{\begin{cases}2x-3y=1\\-4x+6y=2\end{cases}}\)             f)\(\hept{\begin{cases}2x+3y=5\\5x-4y=1\end{cases}}\)

Bài 2: Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa

đường tròn đối với AB. Vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo
thứ tự ở C, D.
a) Chứng minh rằng CD = AC + BD
b) Tính số đo góc COD
c) Gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIOK là hình gì?
Vì sao?
d) Cho OC = 5 ,OD =\(\sqrt{7}\) . Tính bán kính đường tròn.

Giúp mk nha mọi người

Cần gấp ♥♥♥♥

2
30 tháng 4 2020

\(1,a)\hept{\begin{cases}10x-9y=1\\15x+21y=36\end{cases}}\)

\(< =>\hept{\begin{cases}5x+30y=35\\10x+9y=1\end{cases}}\)

\(< =>\hept{\begin{cases}10x+60y=70\\10x+9y=1\end{cases}}\)

\(< =>51y=69< =>y=\frac{69}{51}=\frac{23}{17}\)

Thay \(y=\frac{23}{17}\)vào \(10x-9y=1\)có :

\(10x-9y=1\)\(< =>10x=1+\frac{207}{17}=\frac{224}{17}\)

\(< =>x=\frac{224}{170}=\frac{112}{85}\)

Vậy nghiệm của hệ pt trên là \(\left\{\frac{112}{85};\frac{23}{17}\right\}\)

P/s : Số khá xấu nên ko chắc :P

\(b)\hept{\begin{cases}4x+y=2\\8x+3y=5\end{cases}}\)

\(< =>\hept{\begin{cases}8x+2y=4\\8x+3y=5\end{cases}}\)

\(< =>y=1\)

Thay \(y=1\)vào \(4x+y=2\)có :

\(4x+y=2\)

\(< =>4x=2-1=1< =>x=\frac{1}{4}\)

Vậy nghiệm của hệ pt trên là \(\left\{\frac{1}{4};1\right\}\)

\(c)\hept{\begin{cases}x-y=m\\2x+y=4\end{cases}}\)

\(< =>3x=4+m\)

\(< =>x=\frac{4+m}{3}\)

Thay \(x=\frac{4+m}{3}\)vào \(x-y=m\)có : 

\(x-y=m\)\(< =>\frac{4+m}{3}-\frac{3y}{3}=\frac{3m}{3}\)

\(< =>4+m-3y=3m\)

\(< =>4-3y=2m\)

\(< =>4-2m=3y\)

\(< =>y=\frac{2\left(2-m\right)}{3}\)

Vậy nghiệm của hệ pt trên là \(\left\{\frac{4+m}{3};\frac{2\left(2-m\right)}{3}\right\}\)

\(d)\hept{\begin{cases}3x+2y=6\\x-y=2\end{cases}}\)

\(< =>\hept{\begin{cases}3x+2y=6\\x=2+y\end{cases}}\)

\(< =>3\left(2+y\right)+2y=6\)

\(< =>6+3y+2y=6\)

\(< =>5y=0< =>y=0\)

Thay \(y=0\)vào \(x-y=2\)có :

\(x-y=2< =>x=2\)

Vậy nghiệm của hệ pt trên là \(\left\{2;0\right\}\)

\(e)\hept{\begin{cases}2x-3y=1\\-4x+6y=2\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{1+3y}{2}\\-4x+6y=2\end{cases}}\)

\(< =>-4\left(\frac{1+3y}{2}\right)+6y=2\)

\(< =>-\frac{4+12y}{2}+\frac{12y}{2}=\frac{4}{2}\)

\(< =>-\left(4+12y\right)+12y=4\)

\(< =>-4-12y-4=-12y\)

\(< =>-8-12y=-12y\)

\(< =>12y=12y+8\)(vô lí)

Nên hệ pt trên vô nghiệm :))

\(f)\hept{\begin{cases}2x+3y=5\\5x-4y=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{5-3y}{2}\\5x-4y=1\end{cases}}\)

\(< =>5\left(\frac{5-3y}{2}\right)-4y=1\)

\(< =>\frac{25-15y}{2}-\frac{8y}{2}=\frac{2}{2}\)

\(< =>25-15y-8y=2\)

\(< =>25-23y=2\)

\(< =>23y=25-2=23\)

\(< =>y=1\)

Thay \(y=1\)vào \(2x+3y=5\)có :

\(2x+3y=5< =>2x+3=5\)

\(< =>2x=5-3=2< =>x=1\)

Vậy nghiệm của hệ pt trên là \(\left\{1;1\right\}\)

1 tháng 5 2020

Câu 1 :

a) \(\hept{\begin{cases}10x-9y=1\\15x+21y=36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}10x-9y=1\\10x+14y=24\end{cases}}\)

\(\Leftrightarrow23y=23\)

\(\Leftrightarrow y=1\)

Thay \(y=1\)vào \(10x-9y=1\)ta được:

\(10x-9=1\Leftrightarrow x=1\)

Vậy \(\left(x;y\right)=\left(1;1\right)\)

p/s: mấy câu còn lại chắc ๖ۣۜNhi's Godッ làm ok rồi

28 tháng 5 2017

Ta có:

\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)

\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)

\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)

\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.