K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...

BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:

Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)

Nhân hai vế của BĐT với 27, ta cần chứng minh:

\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)

\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)

Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.

6 tháng 8 2019

a lm phần cô-si 6 số đi

29 tháng 6 2015

Áp dụng Côsi:

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}.\frac{b+1}{8}.\frac{c+1}{8}}=\frac{3}{4}a\)

Tương tự: \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3}{4}b\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\)

\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{1}{4}\left(a+b+c+3\right)\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)

\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}.1=\frac{3}{4}=\frac{3}{4}\)\(\left(\text{đpcm}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

 

\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

\(\Leftrightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge8abc\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Điều này luôn đúng vì:

Áp dụng BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\sqrt[3]{abc}\le\frac{1}{3}\Leftrightarrow\frac{1}{\sqrt[3]{abc}}\ge3\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge3.3=9\)-----> ĐPCM

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

25 tháng 10 2020

 Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge2\sqrt{\frac{1}{a^2}}.2\sqrt{\frac{2}{b^2}}.2\sqrt{\frac{8}{c^2}}=8.\sqrt{16}.\frac{1}{abc}=\frac{32}{abc}\)

Dấu "=" xảy ra khi và chỉ khi ...

25 tháng 10 2020

Áp dụng bất đẳng thức cô -si cho 2 số dương , ta có :

\(\hept{\begin{cases}\frac{1}{a^2}+1\ge2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\\\frac{1}{b^2}+2\ge2\sqrt{\frac{1}{b^2}.2}=\frac{2\sqrt{2}}{b}\\\frac{1}{c^2}+8\ge2\sqrt{\frac{1}{c^2}.8}=\frac{4\sqrt{2}}{c}\end{cases}}\)

Nhân vế với vế ts có :

\(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge\frac{32}{abc}\left(đpcm\right)\)

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

21 tháng 6 2020

Bài làm:

Ta xét: \(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

Tương tự ta chứng minh được: \(\frac{ca}{b^2\left(c+a\right)}\ge\frac{1}{b}\)và \(\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{c}\)

\(\Rightarrow VT+\frac{1}{4}\left(\frac{b+c}{bc}+\frac{c+a}{ca}+\frac{a+b}{ab}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow VT\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Dạ nếu em làm còn nhầm lẫn chỗ nào thì mong mn thông cảm ạ!

21 tháng 6 2020

Ở đoạn tương tự mình viết nhầm phải là: \(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\)  và \(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)nhé!

Học tốt!!!!