K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Ba số chỉ có ước nguyên số là 324; 27; 81; 243;… 

4 tháng 8 2023

Tìm tập hợp ước chung của 50 và 60

50=2 x 52 ; 60 = 22 x 3 x 5

=> ƯCLN(50;60)= 2 x 5 = 10

ƯC(50;60)=Ư(10)={1;2;5;10}

_________

Tìm tập hợp bội chung của 18 và 24 có 2 chữ số

18=2 x 32 ; 24=23 x 3

=> BCNN(18;24)=23 x 32 = 72

B(72)={0;72;144;216;288;360;432;...}

Vì tìm bội chung của 18 và 24 có 2 chữ số => BC(18;24)(có 2 chữ số)= {72}

4 tháng 8 2023

Để tìm tập hợp ước chung của hai số, ta cần liệt kê các ước của từng số và sau đó tìm các ước chung của hai số đó.

Tập hợp ước chung của 50 và 60:
Các ước của 50: 1, 2, 5, 10, 25, 50
Các ước của 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Tập hợp ước chung của 50 và 60 là: {1, 2, 5, 10}

Tập hợp bội chung của 18 và 24 có 2 chữ số:
Các bội của 18: 18, 36, 54, 72, 90, …
Các bội của 24: 24, 48, 72, 96, …
Tập hợp bội chung của 18 và 24 có 2 chữ số là: {72}

27 tháng 4 2018

giúp mk vs

5 tháng 8 2023

Gọi số cần tìm là \(x\) ( \(x\in\)N; 100 ≤ \(x\) ≤ 999)

Theo bài ra ta có \(x\) có dạng: \(x\) = 75k + k ( k \(\in\) N)

⇒ \(x\) = 76k ⇒ k = \(x:76\) ⇒ \(\dfrac{100}{76}\) ≤ k ≤ \(\dfrac{999}{76}\)

⇒ k \(\in\) { 2; 3; 4;...;13}

Để \(x\) lớn nhất thì k phải lớn nhất ⇒ k  = 13 ⇒ \(x\) = 76 \(\times\) 13 = 988

Vậy số thỏa mãn đề bài là 988

Thử lại ta có 988 : 75 = 13 dư 13 (ok)

 

 

 

5 tháng 8 2023

b, Gọi số chia là \(x\) ( \(x\) \(\in\) N; \(x\) > 9)

Theo bài ra ta có:  86 - 9 ⋮ \(x\)  ⇒ 77 ⋮ \(x\)

                                     ⇒ \(x\) \(\in\) Ư(77) = { 1; 7; 11}

                                        vì \(x\) > 9     ⇒ \(x\) = 11

                              Vậy số chia là 11

                              Thương là: (86 - 9 ) : 11 = 7

     Kết luận số chia là 11; thương là 7

Thử lại ta có: 86 : 11 = 7 dư 9 (ok) 

                 

                    

11 tháng 8 2023

a) Ta có: 

\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)

Nên \(10^{10}-1\) ⋮ 9

b) Ta có:

\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)

Mà: \(1+0+0+...+2=3\) ⋮ 3

Nên: \(10^{10}+2\) ⋮ 3

7 tháng 8 2023

a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)

b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)

      Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)

c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1

+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

 ⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên

7 tháng 8 2023

a) \(\overline{aaa}=100a+10a+a=111a\)

mà \(111=37.3⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)

\(\Rightarrow dpcm\)

 

8 tháng 8 2023

\(129-10=119⋮b\)

\(61-10=51⋮b\)

=> b là ước chung của 119 và 51 => b=17

b/

Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị

Số dư trong phép chia này là

14-1=13

\(\Rightarrow a=14.5+13=83\)

9 tháng 8 2023

a) gọi số chia cần tìm là b ( b > 10)

Gọi qlà thương của phép chia 129 cho b

Vì 129 chia cho b dư 10 nên ta có:129 = b.q+ 10 ⇒ b.q1 =119 = 119.1 =17.7

Gọi qlà thương của phép chia 61 chia cho cho b

Do chia 61 cho b dư 10 nên ta có 61 = b.q+10⇒ b.q2 = 51 = 1.51 = 17.3

Vì b < 10 và q≠ qnên ta dược b = 17

Vậy số chia thỏa mãn bài toán là 17.

 

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?

15 tháng 12 2023

Số 4 có là ước của 16, vì 16 có chia hết cho 4 (16 ⋮ 4) nên 4 là ước của 16.