\(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(\left\{{}\begin{matrix}\dfrac{x^2-2x-3}{x^2+x}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\\\dfrac{x-3}{x}\\\dfrac{x^2-4x+3}{x^2-x}=\dfrac{\left(x-3\right)\left(x-1\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\end{matrix}\right.\)

Vậy \(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)

24 tháng 10 2021

\(ĐK:x\ne0;x\ne\pm1\\ \dfrac{x^2-2x-3}{x^2+x}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\\ \dfrac{x^2-4x+3}{x^2-x}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\)

Do đó 3 phân thức trên bằng nhau

29 tháng 10 2017

\(\text{Ta có : }\dfrac{x^2-2x-3}{x^2+x}\\ =\dfrac{x^2+x-3x-3}{x\left(x+1\right)}\\ =\dfrac{\left(x^2+x\right)-\left(3x+3\right)}{x\left(x+1\right)}\\ \\ =\dfrac{x\left(x+1\right)-3\left(x+1\right)}{x\left(x+1\right)}\\ \\ =\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}\\ \\ =\dfrac{x-3}{x}\text{ }\text{ }\text{ }\left(1\right)\)

\(\dfrac{x^2-4x+3}{x^2-x}\\ =\dfrac{x^2-x-3x+3}{x\left(x-1\right)}\\ \\ =\dfrac{\left(x^2-x\right)-\left(3x-3\right)}{x\left(x-1\right)}\\ \\ =\dfrac{x\left(x-1\right)-3\left(x-1\right)}{x\left(x-1\right)}\\ \\ =\dfrac{\left(x-3\right)\left(x-1\right)}{x\left(x-1\right)}\\ \\ =\dfrac{x-3}{x}\text{ }\text{ }\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)

Vậy 3 phân thức \(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}{x};\dfrac{x^2-4x+3}{x^2-x}\) bằng nhau

29 tháng 10 2017

Giả sử :

\(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)

\(\Leftrightarrow\) \(\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{x-3}{x}=\dfrac{x-3}{x}=\dfrac{x-3}{x}\)

Vậy 3 thức trên bằng nhau

7 tháng 5 2017

a. \(x^2y^3.35xy=5.7x^3y^4\)

\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)

\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)

\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)

\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)

\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)

\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)

\(\Rightarrowđpcm\)

\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)

\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)

28 tháng 6 2017

Phân thức đại số

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

21 tháng 4 2017

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

30 tháng 11 2021

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

21 tháng 4 2017

Giải bài 25 trang 47 Toán 8 Tập 1 | Giải bài tập Toán 8

16 tháng 6 2017

dap-an-bai-25_fix

28 tháng 6 2017

Phép cộng các phân thức đại số

7 tháng 11 2018

1) \(\dfrac{A\left(x-5\right)}{\left(x+1\right)\left(x-5\right)}=\dfrac{3x\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow A=3x\)

2) \(\dfrac{\left(x+3\right)\left(x-2\right)}{A\left(x-3\right)}=\dfrac{\left(5x-1\right)\left(x-2\right)}{\left(5x-1\right)\left(x^2+3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+3\right)}{A\left(x-3\right)}=\dfrac{1}{\left(x^2+3\right)}\)

\(\Rightarrow A=\dfrac{\left(x^2+3\right)\left(x+3\right)}{x-3}\)

3) \(\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x+5\right)\left(2x-3\right)}=\dfrac{\left(x-5\right)A}{\left(2x-3\right)\left(x+2\right)}\)

\(\Leftrightarrow1=\dfrac{A}{\left(x+2\right)}\)

\(\Leftrightarrow A=x+2\)