K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

^^

31 tháng 7 2016

Gọi số tiền của 3 người lần lượt là a, b và c.

Áp dụng tính chất của day tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{18}{9}=2\)

\(\frac{a}{2}=2\Rightarrow a=4\)

\(\frac{b}{3}=2\Rightarrow b=6\)

\(\frac{c}{4}=2\Rightarrow c=8\)

Vậy số tiền của 3 người lần lượt là 4 triệu, 6 triệu và 8 triệu.

15 tháng 1 2019

Chọn A

Gọi x; y lần lượt là số xe loại M, loại F cần thuê

Từ bài toán ta được hệ bất phương trình

Tổng chi phí T(x; y) = 4x+ 3y (triệu đồng)

Bài toán trở thành  là tìm x; y nguyên không âm thoả mãn hệ (*)  sao cho T( ;xy)  nhỏ nhất.

Từ đó ta cần thuê 5 xe hiệu M và 4 xe hiệu F thì chi phí vận tải là thấp nhất.

14 tháng 5 2016

       Sau khi mua thì Cường còn lại \(\frac{3}{5}=\frac{15}{25}\) số tiền, Huy còn lại \(\frac{5}{7}=\frac{15}{21}\) số tiền.

Ta thấy thấy tiền của Cường có 25 phần thì tiền của Huy có 21 phần.

                 Giá trị 1 phần là:

                        219000:(15+15)=7300 (đồng)

                  Tiền của Cường có được là:

                          7300x25=182500(đồng)

                  Tiền của Huy có được là:

                           7300x21=153300 (đồng)

                                   Đáp số:153300 đồng

26 tháng 1 2018

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II sản xuất ra.

Như vậy tiền lãi có được là L = 3x + 5y (nghìn đồng).

Theo đề bài: Nhóm A cần 2x + 2y máy;

Nhóm B cần 0x + 2y máy;

Nhóm C cần 2x + 4y máy;

Vì số máy tối đa ở nhóm A là 10 máy, nhóm B là 4 máy, nhóm C là 12 máy nên x, y phải thỏa mãn hệ bất phương trình: Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Khi đó bài toán trở thành: trong các nghiệm của hệ bất phương trình (1) thì nghiệm (x = xo; y = yo) nào cho L = 3x + 5y lớn nhất.

Miền nghiệm của hệ bất phương trình (1) là ngũ giác ABCDE kể cả miền trong.

Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Ta có: L đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác ABCDE.

Tính giá trị của biểu thức L = 3x + 5y tại các đỉnh ta được:

Tại đỉnh A(0;2), L = 10

Tại đỉnh B(2; 2), L = 16

Tại đỉnh C(4; 1), L = 17

Tại đỉnh D(5; 0), L = 15

Tại đỉnh E(0; 0), L = 0.

Do đó, L = 3x + 5y lớn nhất là 17 (nghìn đồng) khi: x = 4; y = 1

Vậy để có tiền lãi cao nhất, cần sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm loại II.

22 tháng 6 2021

TRẢ LỜI:

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

    Điều kiện là x, y, z nguyên dương

    Ta có hệ phương trình

    x + y + z = 1450 (1)

    4x + 2y + z = 3000 (2)

    2x + y - 2z = 0 (3)

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được

    3x + y = 1550

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

    7x + 4y = 4450.

    Giải hệ gồm hai phương trình (4) và (5) ta được.

    x = 350, y = 500.

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.