Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GP là điểm số được học 24h đánh đúng . Còn SP là điểm số mà các thành viên tham gia học trực tuyến 24h đánh đúng đó
hoc24 not học 24h
tham gia web thỳ làm ơn viết đúng cái tên dùm!
F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|
Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:
F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50
=> F\(\ge\)50 => \(Min_F=50\)
P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?
\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)
\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)
\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)
(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)
\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)
\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............
\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)
Dấu "=" sảy ra khi:
\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)
Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)
Mình cũng không chắc đâu! Chúc bạn học tốt!!!
hé hé bạn mik ớ ngân giới tính rất linh hoạt
P/s : đầu óc bạn thì ko đc linh hoạt bởi tên ngân còn hỏi là trai hay gái
sửa lại đề nè:
So sánh: 291 và 535
Ta có: 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927>31257
=> 291>535
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)
Từ đó:
\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)
\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)
Vậy \(x=2006;y=-2003.\)
Gọi độ dài các cạnh lần lượt là x, y, z
Trong một tam giác, độ dài đường cao tỉ lệ nghịch với độ dài cạnh nên ta có:
\(x\div y\div z=\dfrac{1}{12}\div\dfrac{1}{15}\div\dfrac{1}{20}\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)
\(\Rightarrow12x=15y=20z\)
\(12x=15y\Rightarrow\dfrac{x}{15}=\dfrac{y}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\) (1)
\(15y=20z\Rightarrow\dfrac{y}{20}=\dfrac{z}{15}\Rightarrow\dfrac{y}{4}=\dfrac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{60}{12}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\Rightarrow x=5\cdot5=25\\\dfrac{y}{4}=5\Rightarrow y=5\cdot4=20\\\dfrac{z}{3}=5\Rightarrow z=5\cdot3=15\end{matrix}\right.\)
Vậy ...
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)=\(\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{2^{10}\cdot3^8-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{6}{10}=\dfrac{3}{5}\)
Trả lời đi nào
bạn ơi đề thiếu