Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy của ba đội theo thứ tự là :x1,x2,x3 (máy)
Theo đề bài ta có : x1-x2=2
Vì các máy có cùng năng suất nên số máy và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Do đó ta có :4x1 = 6x2 = 8x3 hay
Theo tính chất của dãy tỉ số bằng nhau ta có:
Số máy của ba đội theo thứ tự là 6 ; 4 ; 3 (máy )
Theo bài ta có số máy và số ngày của mỗi đội là 2 đại lượng tỉ lệ nghịch nên ta có :
4.x\(_1\)=6.x\(_2\)=8.x\(_3\) và x\(_1\)-x\(_2\)=2
\(\Rightarrow\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x_1}{\dfrac{1}{4}}=\dfrac{x_2}{\dfrac{1}{6}}=\dfrac{x_3}{\dfrac{1}{8}}=\dfrac{x_1-x_2}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)
\(\dfrac{x_1}{\dfrac{1}{4}}=24\Rightarrow x_1=24.\dfrac{1}{4}=6\)
\(\dfrac{x_2}{\dfrac{1}{6}}=24\Rightarrow x_2=24.\dfrac{1}{6}=4\)
\(\dfrac{x_3}{\dfrac{1}{8}}=24\Rightarrow x_3=24.\dfrac{1}{8}=3\)
Vậy : Đội một có 6 máy
Đội hai có 4 máy
Đội ba có 3 máy
Gọi số máy của mỗi đội lần lượt là \(x,y,z\)(máy) \(x,y,z\inℕ^∗\)
Ta có: \(4x=6y=8z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)
\(\Leftrightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)
Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)
Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)
Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).
Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)
\(\Rightarrow a=24\div3=8\) \(b=24\div4=6\) \(c=24\div6=4\)
Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.
Gọi x,y,z lần lượt là ba đội máy san
Ta có: 8x=6y=4z và z-y=8
\(\Rightarrow\)8x/24=6y/24=4z/24 và z-y=8
\(\Rightarrow\)x/3=y/4=z/6 và z-y=8
ADTCDTSBN, ta có:
y/4=z/6 =z-y/6-4=8/2=4
x/3=4 thì x =12
y/4=4 thì y=16
z/6=4 thì z=24
Vậy: đội 1 có 12 máy, đội 2 có 16 máy, đội 3 có 24 máy
Gọi số máy của 3 đội 1,2,3 là x,y,z (máy) x,y,z\(\inℕ^∗\)
TBR, ta có : số máy và thời gian là 2 ĐLTLN
\(\Rightarrow\)8x=6y=4z
\(\Rightarrow\frac{x}{\frac{1}{8}}\)=\(\frac{z}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}\)
Ấp dụng tính chất của dãy tỉ số bằng nhau .TC
\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\)\(\frac{z}{\frac{1}{4}}-\frac{y}{\frac{1}{6}}=\frac{8}{\frac{1}{12}}=96\)
\(\Rightarrow\frac{x}{\frac{1}{8}}=96\Rightarrow x=\frac{1}{8}.96=12\left(TM\right)\)
\(\Rightarrow\frac{y}{\frac{1}{6}}=96\Rightarrow y=\frac{1}{6}.96=16\left(TM\right)\)
MÀ \(\frac{z}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}\Rightarrow\frac{z}{\frac{1}{4}}=96\Rightarrow z=\frac{1}{4}.96=24\left(TM\right)\)
Vậy số máy của 3 đội 1,2,3 lần lượt là 12,16,24 máy
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{c-b}{15-12}=1\)
Do đó: a=20; b=12; c=15
Gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là a(máy),b(máy),c(máy)
(Điều kiện: \(a,b,c\in Z^+\))
Vì đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai hoàn thành công việc trong 6 ngày và đội thứ ba hoàn thành công việc trong 8 ngày nên ta có:
4a=6b=8c
=>\(\dfrac{4a}{24}=\dfrac{6b}{24}=\dfrac{8c}{24}\)
=>\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\)
Ba đội có 13 máy nên a+b+c=13
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{13}{13}=1\)
=>\(a=6\cdot1=6;b=4\cdot1=4;c=3\cdot1=3\)
Vậy: Đội thứ nhất có 6 máy
Đội thứ hai có 4 máy
Đội thứ ba có 3 máy