Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy của cả đội thứ nhất; đội thứ hai; đội thứ ba lần lượt là x(máy); y(máy); z(máy) (x; y; z là số tự nhiên khác 0)
Ta có số máy và số ngày làm việc tỉ lệ nghịch với số máy (vì năng suất của mỗi máy là như nhau
nên 2x = 3y = 4z hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
mà y - z = 3 (đội thứ hai nhiều hơn đội thứ ba 3 máy)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y-z}{\frac{1}{3}-\frac{1}{4}}=\frac{3}{\frac{1}{12}}=36\)
do đó x = 1/2 . 36 = 18
y = 1/3 . 36 = 12
z = 1/4 . 36 = 9
Vậy số máy của cả ba đội lần lượt là: 18(máy); 12(máy); 9(máy)
Số máy | a | b | c |
Số ngày | 2 | 3 | 4 |
Gọi 3 đội máy san đất lần lượt là a,b,c ( a, b, c >0)
Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên
Ta có :2.a=3.b=4.c\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)\(\)
\(\)Hay:\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{b-c}{4-3}=\frac{3}{1}=3\)
\(\frac{a}{6}=1\Rightarrow a=6\)
\(\frac{b}{4}=1\Rightarrow b=4\)
\(\frac{c}{3}=1\Rightarrow c=3\)
Vậy đội 1, 2, 3 có số máy lần lượt là :6 máy, 4 máy, 3 máy
Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)
Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)
Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).
Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)
\(\Rightarrow a=24\div3=8\) \(b=24\div4=6\) \(c=24\div6=4\)
Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.
Gọi số máy của 3 đội là 1 , 2, 3, là a , b ,c ( máy )
=> a - b = 2
Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên : 3a = 4b = 6c
=> 3a/24 = 4b/24 = 6c/24 => a/8 = b/6 = c/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/8 = b/6 = c/4 = a - b/8 - 6 = 2/2 = 1
a/8 = 1 => a = 8
b/6 = 1 => b = 6
c/6 = 1 =>
gọi x;y;z lần lượt là số máy lần lượt của 3 đội (x;y;z>0)
theo đề ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc
=> x.4=y.6=z.8 và x-y=2
=>\(\frac{x}{6}=\frac{y}{4};\frac{y}{8}=\frac{z}{6}\)
=>\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}\)
áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}=\frac{x-y}{48-32}=\frac{2}{16}=0,125\)
suy ra: \(\frac{x}{48}=0,125\Rightarrow x=6\)
\(\frac{y}{32}=0,125\Rightarrow y=4\)
\(\frac{z}{24}=0,125\Rightarrow z=3\)
Vậy số máy 3 đội là: *đội thứ nhất : 6 máy
*đội thứ 2: 4 máy
*đội thứ 3: 3 máy
gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba là:
x,y,z ( x,y,z thuộc N*)
vì các máy có cùng năng xuất nên số máy và số ngày là hai đại lượng tỉ lệ nghịch , do đó ta có:
4x=6y=8z hay \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{3-2}{12}}=\frac{2.12}{1}=24\)
do đó: \(\frac{x}{\frac{1}{4}}=24\Rightarrow x=24.\frac{1}{4}=6\)
\(\frac{y}{\frac{1}{6}}=24\Rightarrow x=24.\frac{1}{6}=4\)
\(\frac{z}{\frac{1}{8}}=24\Rightarrow x=24.\frac{1}{8}=3\)
Gọi a,b,c là số máy của mỗi đội
Vì số máy càng tăng thì số ngày càng giảm và ngược lại
nên a,b,c tỉ lệ nghịch với 3,4,6
=> \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\) và a-b = 4
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\)=\(\frac{a-b}{\frac{1}{3}-\frac{1}{4}}\)=\(\frac{4}{\frac{1}{12}}\)=48
\(\frac{a}{\frac{1}{3}}\)=48 => a = 16
\(\frac{b}{\frac{1}{4}}\)=48 =>: b = 12
\(\frac{c}{\frac{1}{6}}\)=48 => c = 8
Vậy số máy mỗi đội lần lượt là 16 máy; 12 máy; 8 máy
Gọi \(a,b,c\) lần lượt là số máy của đội \(I,II,III\)
Theo đề , ta có : \(a-b=4\)
Do số máy và số ngày là hai đại lượng tỉ lệ nghịch với nhau nên ta có :
\(3a=4b=6c\)
\(\Rightarrow\frac{3a}{12}=\frac{4b}{12}=\frac{6c}{12}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a-b}{4-3}=\frac{4}{1}=4\)
\(\Rightarrow a=16;b=12;c=8\)
Vậy số máy cày của đội \(I,II,III\) lần lượt là \(16;12;8\) máy .
Với cùng 1 klượng việc như nhau thì số máy và thời gian hoàn thành công việc là 2 ĐLTLN.
Gọi số máy của đội 1,2,3 lần lượt là a,b,c
Vì chúng là 2 ĐLTLN nên ta có: a4=b6=c8=>a/(1/4)=b/(1/6)=c/(1/8) và a-c=12
TTCDTSBN, ta có: a/(1/4)=b/(1/6)=c/(1/8)=(a-c)=(1/4-1/8)=12/0,125=96
khi đó: a/(1/4)=96=>a=24; b/(1/6)=96=>b=16; c/(1/8)=96=>c=12
Vậy số máy của 3 đội lần lượt là 24,16,12.
Gọi x;y;z lần lượt của ba đội (x;y;z>0)
Theo đầu bài ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc
=> x.4=y.6=z.8 và x-y=2
=> x/6=(y/4);(y/8)=z/6
=> x/48=y/32=z/24
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/48=y/32=z/24=(x-y)/(48-32)=2/16=0,125
Suy ra: x/48=0,125; x= 6
y/32=0,125; y= 4
z/24=0,125; z= 3
Vậy số máy của 3 đội là: *đội thứ nhất: 6 máy
*đội thứ hai: 4 máy
*đội thứ ba: 3 máy
Gọi số máy của 3 đội lần lượt là x, y, z ( máy ), ( x, y, z > 0; x > y )
Vì cùng làm 1 khối lượng công việc như nhau nên số đội và số máy là đại lượng tỉ lệ nghịch.
Ta có: 4x=6y=8z \(\Rightarrow\frac{4.x}{24}=\frac{6.y}{24}=\frac{8.z}{24}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) và x - y = 2
Áp dụng tính chất của dãy tỉ số = nhau, ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)
\(\Rightarrow\) x= 1.6=6
y= 1. 4= 4
z = 1.3 = 3
Vậy số máy của 2 đội lần lượt là 6; 4; 3 ( máy )
Chúc bn hc tốt
K hiểu thì mk giảng cho nghen. K bk nên ms pải học mà