Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy mỗi đội lần lượt là x,y,z (máy) (x,y,z \( \in \)N*).
Vì số máy cày của đội thứ nhất nhiều hơn số máy cày của đội thứ hai là 2 máy nên x – y = 2
Vì 3 cánh đồng có cùng diện tích và năng suất của các máy như nhau nên số máy cày và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch.
Áp dụng tính chất của hai đại lượng tỉ lệ nghịch, ta có:
4x=6y=8z
\(\begin{array}{l} \Rightarrow \dfrac{x}{{\dfrac{1}{4}}} = \dfrac{y}{{\dfrac{1}{6}}} = \dfrac{z}{{\dfrac{1}{8}}} = \dfrac{{x - y}}{{\dfrac{1}{4} - \dfrac{1}{6}}} = \dfrac{2}{{\dfrac{1}{{12}}}} = 2:\dfrac{1}{{12}} = 2.12 = 24\\ \Rightarrow x = 24.\dfrac{1}{4} = 6\\y = 24.\dfrac{1}{6} = 4\\z = 24.\dfrac{1}{8} = 3\end{array}\)
Vậy số máy mỗi đội lần lượt là 6 máy, 4 máy, 3 máy.
Gọi số máy cày của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là:
\(x\); y; z \(x;y;z\in N\)*
Theo bài ra ta có: 6\(x\) = 8y = 12z
⇒3\(x\) = 4y = 6z
⇒ \(\dfrac{x}{4}\) = \(\dfrac{y}{3}\); \(\dfrac{y}{6}\) = \(\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}\) = \(\dfrac{y}{3}\) = \(\dfrac{x-y}{4-3}\) = \(\dfrac{2}{1}\) = 2
⇒ \(x\) = 2\(\times\) 4 = 8; y = 2 \(\times\) 3 = 6; z = \(\dfrac{y}{6}\) \(\times\) 4 = \(\dfrac{6}{6}\) \(\times\) 4 = 4
Kết luận: Đội thứ nhất có 8 máy cày
Đội thứ hai có 6 máy cày; đội thứ 3 có 4 máy cày
Gọi số máy cày của ba đội lần lượt là x;y;z (x;y;z > 0)
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch
Theo bài ra ta có: x.3 = y.5 = z.4 và z - y = 3
Suy ra: y 4 = z 5 . Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
y 4 = z 5 = z − y 5 − 4 = 3 1 = 3
Do đó y = 12 ; z = 15
Vậy đội thứ hai có 12 máy
Đáp án cần chọn là C
Gọi số máy cày của ba đội lần lượt là x;y;z (x;y;z > 0)
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch
Theo bài ra ta có: x.4 = y.6 = z.8 và x - y = 2
Suy ra: x 6 = y 4 . Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 6 = y 4 = x − y 6 − 4 = 2 2 = 1
Do đó x = 6 ; y = 4
Vậy đội thứ nhất có 6 máy
Đáp án cần chọn là C
Gọi số máy cày của đội thứ nhất, đội thứ hai và đội thứ ba lần lượt là a(máy), b(máy) và c(máy)(Điều kiện: a,b,c∈N*)
Vì đội thứ nhất làm xong công việc trong 3 ngày, đội thứ hai trong 6 ngày và đội thứ ba trong 5 ngày và năng suất của ba đội như nhau nên ta có phương trình:
\(3a=6b=5c\)
\(\Leftrightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}\)
Vì số máy của đội thứ nhất nhiều hơn số máy của đội thứ ba 8 chiếc nên ta có phương trình: a-c=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a-c}{\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{8}{\dfrac{2}{15}}=8\cdot\dfrac{15}{2}=60\)
Do đó:
\(\left\{{}\begin{matrix}3a=60\\6b=60\\5c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\left(nhận\right)\\b=10\left(nhận\right)\\c=12\left(nhận\right)\end{matrix}\right.\)
Vậy: Số máy cày của ba đội lần lượt là 20 máy, 10 máy và 12 máy
Gọi số máy cày của 3 đội là a, b, c ( máy cày)
Vì các máy cày có cùng năng suất, cày trên 1 cánh đồng có diện tích như nhau nên số ngày và số máy cày là 2 đại lượng tỉ lệ nghịch.
➩ a.3 = b.6 = c.5
➩ \(\dfrac{a.3}{30}\) = \(\dfrac{b.6}{30}\) = \(\dfrac{c.5}{30}\)
➩ \(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\)
Mà số máy của đội thứ nhất hơn số máy của đội thứ ba là 8 chiếc.
Nên a - c = 8
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\) = \(\dfrac{a-c}{10-6}\) = \(\dfrac{8}{4}\)= 2
➩ a = 2.10 = 20
b = 2.5 = 10
c = 2.6 = 12
Vậy...
Gọi số máy cày lần lượt của ba đội là a,b,c (a,b,c \(\in\)N*, a,b,c < 45)
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{2}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{4}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{4+2+3}=\frac{45}{9}=5\)
=> a = 5.4= 20; b = 5.2 = 10; c = 5.3 = 15
Ba đội máy cày có 24 máy ( có cùng năng suất ) làm việc trên 1 cánh đồng có cùng diện tích .Độ 1 hoàn thành công việc trong 15 ngày , đôin 2 hoàn thành công việc trong 20 ngày , đội 3 hoàn thành công việc trong 12 ngày . Hỏi mỗi đội có bao nhiu máy cày
Gọi số máy cày của bốn đội lần lượt là m,n,o,p(máy)
Vì bốn cánh đồng có diện tích bằng nhau => Số máy cày và số ngày làm việc tỉ lệ nghịch với nhau.
=> 6m = 10n = 12o = 8p.
=> \(\frac{m}{\frac{1}{6}}=\frac{n}{\frac{1}{10}}=\frac{o}{\frac{1}{12}}=\frac{p}{\frac{1}{8}}=\frac{m+n+o+p}{\frac{1}{6}+\frac{1}{12}+\frac{1}{10}+\frac{1}{8}}=\frac{57}{\frac{57}{120}}=120\)
=> m = 120: 6 = 20(máy)
n = 120:10 = 12(máy)
o = 120: 12 = 10(máy)
p = 120: 8 = 15(máy
Gọi số máy cày đội thứ nhất,thứ hai,thứ ba lần lượt là x(máy),y(máy),z(máy)
Theo đề bài ta có : y x = 2
Vì số máy cày và số ngày cày xong cánh đồng là hai đại lượng tỉ lệ nghịch,nên ta có :
\(13x=9y=8z\)=> \(\frac{x}{\frac{1}{13}}=\frac{y}{\frac{1}{9}}=\frac{z}{\frac{1}{8}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{13}}=\frac{y}{\frac{1}{9}}=\frac{z}{\frac{1}{8}}=\frac{y-x}{\frac{1}{9}-\frac{1}{13}}=\frac{2}{\frac{4}{117}}=\frac{117}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{13}}=\frac{117}{2}\\\frac{y}{\frac{1}{9}}=\frac{117}{2}\\\frac{z}{\frac{1}{8}}=\frac{117}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{9}{2}\\y=\frac{13}{2}\\z=\frac{117}{16}\end{cases}}\)
Xem lại đề nhé bạn -.-
Gọi số máy của ba đội lần lượt là \(a,b,c\)(máy) \(a,b,c\inℕ^∗\)
Vì các đội hoành thành công việc trong lần lượt \(3,5,6\)ngày nên \(3a=5b=6c\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Vì số máy cày đội thứ 3 ít hơn đội thứ 2 là một máy nên \(b-c=1\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{b-c}{6-5}=\frac{1}{1}=1\)
\(\Leftrightarrow\hept{\begin{cases}a=1.10=10\\b=1.6=6\\c=1.5=5\end{cases}}\)