Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)
10^100 +5 = 10......0 +5 = 10......5
Ta có 10.......5 chia hết cho 5( có chữ số tận cùng là 5)
10.......5 chia hết cho 3(1+5=6;6 chia hết cho 3)
10^50+44=10.....0+44=10.....44
Ta có: 10.....44 chia hết cho 2 (có chữ số tận cùng là 4)
10.....44 chia hết cho 9( 1+4+4=9;9 chia hết cho 9)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1)
a)10100+5 chia hết cho 3 và 5 vì
10100=1000.....(100 số 0) => có tổng cacs chữ số =1
=>10100+5 có tổng các chữ số = \(1+5⋮3\)
10100+5 = 100....05(99 số 0)
vì có tận cùng =5 nên =>\(10^{100}+5⋮5\)
b) bn làm tương tự nhé
a)Ta có:
10100+5 =1000...000 +5=1000..0005
100 số 0 99 số 0
—Vì số 1000...0005 có chữ số tận cùng là 5
99 số 0
==> 1000...0005 chia hết cho 5
99 số 0
— Vì số 1000...0005 có tổng các chữ số là 6
99 số 0
Mà 6 chia hết cho 3
Nên 1000...0005 chia hết cho 3
99 số 0
Vậy sô 1000...0005 chia hết cho cả 3 và 5
99 số 0
b)Ta có
1050+44=1000...000 +44=1000..00044
50 số 0. 48 số 0
—Vì 1000...00044 là số chẵn
48 số 0
Nên 1000...00044 chia hết cho 2
48 số 0
—Vì 1000...00044 có tổng các chữ số bằng 9
48 số 0
Mà 9 chia hết cho 9
Nên 1000...00044 chia hết cho 9
48 số 0
Vậy 1000...00044 chia hết cho cả 2 và 9
Bạn tham khảo ở link này nha:
Câu hỏi của Ngô Đức Phương -Toán lớp 6 - Học toán với OnlineMath
Chúc bạn học giỏi
a) Ta có:
10^100=100..00
=> 10^100+5=100...05 chia hết cho 5 ( vì có chữ số tạn cùng là 5) (1)
Tổng các chữ số của 10^100+5 là:
1+0+0+..+5=6 chia hết cho 3 (2)
Từ (1) và (2) => 10^100+5 chia hết cho 3 và 5
a) \(10.100+35⋮5,9\)
10.100+35
= 1000+35
= 1035
=> \(1035⋮5,9\)
Vậy \(1035⋮5,9\)
b) \(10.100+98⋮2,9\)
= 10.100+98
= 1000+98
= 1098
=> \(1098⋮2,9\)
Vậy \(1098⋮2,9\)
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)