Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + y +xy = 6
y( 1 + x ) + x + 1 = 7
( x + 1 ) ( y + 1 ) = 7
x+1 | -7 | -1 | 1 | 7 |
y+1 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -2 | -8 | 6 | 0 |
b) 2x + y - 2xy - 8 = 0
2x ( 1 - y ) - ( 1 - y ) - 7 = 0
( 1 - y ) ( 2x - 1 ) = 7
2x - 1 | -7 | -1 | 1 | 7 |
1 - y | -1 | -7 | 7 | 1 |
x | -3 | 0 | 1 | 4 |
y | 2 | 8 | -6 | 0 |
c) x - 4y + xy - 1 = 0
x( 1 + y ) -4( 1 + y ) + 3 = 0
( 1 + y ) ( x- 4 ) = 3
x- 4 | -3 | -1 | 1 | 3 |
1 + y | -1 | -3 | 3 | 1 |
x | 1 | 3 | 5 | 7 |
y | -2 | -4 | 2 | 0 |
ta có : a) xy- 5x + y = 17
=) x . ( y - 5 ) . ( y - 5 ) = 17 - 5
=) (x+1) . ( y - 5 ) = 12
=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }
=) y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) y \(\in\){ 17 ; 11 ; 8 ; 7 ; 6 ; 9 }
vậy ta có 6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )
Bài giải
a) xy - 5x + y = 17
x(y - 5) + y = 17
x(y - 5) + y - 5 = 17 - 5 = 12
x(y - 5) + (y - 5) = 12
x(y - 5) + 1(y - 5) = 12
(x + 1)(y - 5) = 12
Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.
b) 3x + 4y - xy = 15
3x + (4y - xy) = 15
3x + y(4 - x) = 15
12 - [3x + y(4 - x)] = 12 - 15 = -3
12 - 3x - y(4 - x) = -3 (12 - 3x = 3.4 - 3x = 3(4 - x))
3(4 - x) - y(4 - x) = -3
(3 - y)
Sửa đề :
Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0
Giải
Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.
Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.
Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.
⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.
Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).
Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).
Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1); (−2; 2)}.
Nó bị lỗi phông thông cảm
HT
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
a)x.y chứ ko phải x,y nhé bạn
x.y+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
=>(x-2).(y+3)=5
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
3x+4y+xy=1
ó x(3-y) + 4y = 1
ó x(3-y) -12 + 4y = 1 - 12
ó x(3-y) - 4(3-y) = -13
ó (x - 4 )( 3 - y ) = -13
Ta có bảng:
x-4 | 1 | 13 | -1 | -13 |
3-y | 13 | 1 | -13 | -1 |
x | 5 | 17 | -3 | -9 |
y | -10 | 2 | 16 | 4 |
Vậy bn tự kết luận gt x,y
a;\(xy+3x-y=8\)
\(\Rightarrow x\left(y+3\right)-\left(y+3\right)=8-3\)
\(\Rightarrow\left(x-1\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng
x-1 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 2 | -8 | -2 | -4 |
Vậy..............................
b,\(2xy-4x+y=8\)
\(\Rightarrow x\left(2y-4\right)+y=8\)
\(\Rightarrow2x\left(2y-4\right)+\left(2y-4\right)=8-4\)
\(\Rightarrow\left(2x+1\right)\left(2y-4\right)=4\)
\(\Rightarrow\left(2x+1\right);\left(2y-4\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Xét bảng
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
2y-4 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 1/2 | -3/2 | 3/2 | -5/2 |
y | 4 | 0 | 3 | 1 | 5/2 | 3/2 |
Vậy.....................................
b)
xy + 3x - 4y = 0
<=> x(3 + y) - 4(y + 3) = - 12
<=> (y + 3)(x - 4) = - 12
Bạn tự xét từng trường hợp nhé (^~^)
c)
2xy + 3x - 6y = 1
<=> x(2y + 3) - 3(2y + 3) = - 8
<=> (2y + 3)(x - 3) = - 8
Bạn tự xét từng trường hợp nhé (^~^)
mk k bt lm